• Title/Summary/Keyword: methylmercury

Search Result 87, Processing Time 0.026 seconds

Difference in Methylmercury Exposure to Fetus and Breast-feeding Offspring: A Mini-Review

  • Sakamoto Mineshi;Murata Katsuyuki;Nakai Kunihiko;Satoh Hiroshi
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.3
    • /
    • pp.179-186
    • /
    • 2005
  • The purpose of this paper was to concisely review the practical changes in MeHg concentrations in fetus and offspring throughout gestation and suckling from our recent animal and human studies. In the animal study, adult female rats were given a diet containing 5ug/g Hg (as MeHg) for 8 weeks. Then they were mated and subsequently given the same diet throughout gestation and suckling. On embryonic days 18, 20, 22 and at parturition, the concentrations of Hg in the brains of fetus were approximately 1.5-2.0 times higher than those in the mothers. However, during the suckling period Hg concentrations in the brain rapidly declined to about 1/10 of that during late pregnancy. Hg concentrations in blood also decreased rapidly after birth. In human study, Hg concentrations in red blood cells (RBC-Hg) in 16 pairs of maternal and umbilical cord blood samples were compared at birth and 3 months of age after parturition. RBC-Hg in the umbilical cords was about 1.6 times higher than those in the mothers at parturition. However, all the infants showed declines in Hg concentrations throughout the breast-feeding period. RBC-Hg at 3 months of age was about half that at birth. Both the animal and human studies indicated that MeHg exposure to the fetus might be especially high but it dramatically decreases during the suckling period. Therefore, close attention should be paid to the gestation rather than the breast-feeding period to avoid the risk of MeHg to human infants.

Differentially Expressed Genes by Methylmercury in Neuroblastoma cell line using suppression subtractive hybridization (SSH) and cDNA Microarray

  • Kim, Youn-Jung;Chang, Suk-Tai;Yun, Hye-Jung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.187-187
    • /
    • 2003
  • Methylmercury (MeHg), one of the heavy metal compounds, can cause severe damage to the central nervous system in humans. Many reports have shown that MeHg is poisonous to human body through contaminated foods and has released into the environment. Despite many studies on the pathogenesis of MeHg-induced central neuropathy, no useful mechanism of toxicity has been established so far. In this study, two methods, cDNA Microarray and SSH, were performed to assess the expression profile against MeHg and to identify differentially expressed genes by MeHg in neuroblastoma cell line. TwinChip Human-8K (Digital Genomics) was used with total RNA from SH-SY5Y (human neuroblastoma cell line) treated with solvent (DMSO) and 6.25 uM (IC50) MeHg. And we performed forward and reverse SSH method on mRNA derived from SH-SY5Y treated with DMSO and MeHg (6.25 uM). Differentially expressed cDNA clones were sequenced and were screened by dot blot and ribonuclease protection assay to confirm that individual clones indeed represent differentially expressed genes. These sequences were identified by BLAST homology search to known genes or expressed sequence tags (ESTs). Analysis of these sequences may provide an insight into the biological effects of MeHg in the pathogenesis of neurodegenerative disease and a possibility to develop more efficient and exact monitoring system of heavy metals as environmental pollutants.

  • PDF

Chemical Risk Factors for Children's Health and Research Strategy (어린이 건강관련 유해물질 연구방향)

  • Lee, Hyo-Min;Jung, Ki-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.276-283
    • /
    • 2008
  • To provide the research strategy for protection of children's health from hazardous chemical, we reviewed the hazardous chemicals can be exposed through maternity, children's life style and living environment. Recently, diseases related with children's living condition were focused as asthma, atopy, childhood developmental disability, congenital malformations and obesity. Children can be exposed to hazardous chemicals through an ambient air, water, soil, food, toys and other factors such as floor dust. Also children's health was deeply related with a wrong life style and neglectful caring by a lack of knowledge and information of harmful ones at parents and child care center's nursers. According to the previous study, the chemical risk factor of children's health were identified as inorganic arsenic, bisphenol A, 2,4-D, dichlorvos, methylmercury, PCBs, pesticide, phthalates, PFOA/PFOS, vinyl chloride, et al. Domestic studies for identification of causality between children exposure to chemicals and resulted hazardous effects were not implemented. The confirmation of chemical risk factors through simultaneously performing toxicological analysis, human effect study, environmental/human monitoring, and risk assessment is needed for good risk management. And also, inter-agency collaboration and sharing information can support confirming scientific evidence and good decision making.

The application of DGTs for assessing the effectiveness of in situ management of Hg and heavy metal contaminated sediment

  • Bailon, Mark Xavier;Park, Minoh;Choi, Young-Gyun;Reible, Danny;Hong, Yongseok
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • The effectiveness of in situ sediment capping as a technique for heavy metal risk mitigation in Hyeongsan River estuary, South Korea was studied. Sites in the estuary were found previously to show moderate to high levels of contamination of mercury, methylmercury and other heavy metals. A 400 m × 50 m section of the river was selected for a thin layer capping demonstration, where the total area was divided into 4 sections capped with different combinations of capping materials (zeolite, AC/zeolite, AC/sand, zeolite/sand). Pore water concentrations in the different sites were studied using diffusive gradient in thin film (DGT) probes. All capping amendments showed reduction in the pore water concentration of the different heavy metals with top 5 cm showing %reduction greater than 90% for some heavy metals. The relative maxima for the different metals were found to be translated to lower depths with addition of the caps. For two-layered cap with AC, order of placement should be considered since AC can easily be displaced due to its relatively low density. Investigation of methylmercury (MeHg) in the site showed that MeHg and %MeHg in pore water corresponds well with maxima for sulfide, Fe and Mn suggesting mercury methylation as probably coupled with sulfate, Fe and Mn reduction in sediments. Our results showed that thin-layer capping of active sorbents AC and zeolite, in combination with passive sand caps, are potential remediation strategy for sediments contaminated with heavy metals.

Methylmercury Toxicity Is Induced by Elevation of Intracellular $Ca^{2+}$ through Activation of Phosphatidylcholine-Specific Phospholipase C

  • Chin, Mi-Reyoung;Kang, Mi-Sun;Jeong, Ju-Yeon;Jung, Sung-Yun;Seo, Ji-Heui;Kim, Dae-Kyong
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.13-13
    • /
    • 2003
  • Methylmercury (MeHg) is a ubiquitous environmental toxicant that can be exposed to humans by ingestion of contaminated food including fish and bread. MeHg has been suggested to exert its toxicity through its high reactivity to thiols, generation of arachidonic acid and reactive oxygen species (ROS), and elevation of intracellular $Ca^{2+}$ levels ([$Ca^{2+}$$_{i}$). However, the precise mechanism has not been fully defined. Here we show that phosphatidylcholine-specific phospholipase C (PC-PLC) is a critical pathway for MeHg-induced toxicity. MeHg activated the acidic form of sphingomyelinase (A-SMase) and group IV cytosolic phospholipase $A_2$ ($cPLA_2$) downstream of PC-PLC, but these enzymes as well as protein kinase C were not linked to MeHg's toxicity. Furthermore, MeHg produced ROS, which did not cause the toxicity. However, D6O9, an inhibitor of PC-PLC, significantly reversed the toxicity in a time- and dose-dependent manner in MDCK and SH-5YSY cells. Addition of EGTA to culture media resulted in partial decrease of [$Ca^{2+}$$_{i}$ and partially blocked cell death. In contrast, D609 completely prevented cell death with parallel decreases in diacylglycerol and [$Ca^{2+}$$_{i}$. Together, our findings indicated that MeHg-induced toxicity was caused by elevation of [$Ca^{2+}$]$_{i}$ through activation of PC-PLC. The toxicity was not attributable to the signaling pathways such as $cPLA_2$, A-SMase, and PKC, or to the generation of ROS.

  • PDF

Association between Blood Mercury and Seafood Consumption in Korean Adults: KoNEHS Cycle 4 (2018~2020)

  • Ji-Eun Oh;Tae-Hyeong Kim;Eun-Hee Lee
    • Biomedical Science Letters
    • /
    • v.30 no.1
    • /
    • pp.24-31
    • /
    • 2024
  • Mercury is a chemical pollutant widely present in the environment. Humans are generally exposed to mercury in the form of organic Hg (methylmercury) through the consumption of seafood. Koreans enjoy eating fish therefore blood mercury concentration is usually higher than in developed countries. By investigating blood mercury concentration according to the frequency of seafood consumption and sociodemographic factors, we aimed to identify recent trends in blood mercury concentration in Korean adults. This study was conducted using KoNEHS cycle 4 (2018~2020) from the National Institute Environmental Research Survey. The geometric mean concentration of blood mercury of the subjects was 2.959 (±1.018) ㎍/L, which was significantly higher in men than in women. It was observed that as the frequency of fish and shellfish consumption increased, the blood mercury concentration increased. In adjusted logistic regression, fish consumption was associated with 36.7% increased risk of blood mercury levels [Odds ratio, 1.367; 95% confidence interval (CI), 1.246~1.500], and shellfish consumption was associated with 26.5% increased risk of blood mercury levels [Odds ratio, 1.265; 95% confidence interval (CI), 1.134~1.410]. Blood mercury concentration was also found to increase as the socioeconomic level increased. In conclusion, the geometric mean concentration of blood mercury was increased compared to the one in the 3rd KoNEHS (2015~2017) and seafood consumption and socioeconomic level were still significantly associated with increasing blood mercury concentration in Korea. Therefore, it is necessary to encourage healthy seafood consumption habits and conduct continuous monitoring considering various factors to reduce blood mercury levels.

Prenatal Exposures to Environmental Chemicals and Children's Neurodevelopment: An Update

  • Bellinger, David C.
    • Safety and Health at Work
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • This review surveys the recent literature on the neurodevelopmental impacts of chemical exposures during pregnancy. The review focuses primarily on chemicals of recent concern, including phthalates, bisphenol-A, polybrominated diphenyl ethers, and perfluorinated compounds, but also addresses chemicals with longer histories of investigation, including air pollutants, lead, methylmercury, manganese, arsenic, and organophosphate pesticides. For some chemicals of more recent concern, the available literature does not yet afford strong conclusions about neurodevelopment toxicity. In such cases, points of disagreement among studies are identified and suggestions provided for approaches to resolution of the inconsistencies, including greater standardization of methods for expressing exposure and assessing outcomes.

Health Effects of Mercury Exposure through Fish (어패류를 통한 수은 노출과 건강영향)

  • SaKong, Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.28 no.2
    • /
    • pp.105-115
    • /
    • 2011
  • Mercury is a toxic, persistent pollutant that bioaccumulates and biomagnifies through food webs. People are exposed to methyhnercruy mainly through their diet, especially through the consumption of freshwater and marine fish and of other animals that consume fish (e.g., marine mammals). All humans are exposed to low levels of mercury. Dietary patterns can increase exposure to a fish-eating population where the fish and seafood are contaminated with mercury. The primary toxicity targets of mercury and mercury compounds are the nervous system, kidneys, and cardiovascular system. It is generally accepted that developing organ systems are most sensitive to the toxic effects of mercury. The fetal-brain mercury levels appear to be significantly higher than the maternal-blood mercury levels, and the developing central nervous system of the fetus is currently regarded as the main system of concern as it demonstrates the greatest sensitivity. The subpopulation that may be at greater risk for mercury toxicity are those exposed to higher levels of methylmercury due to carnivorous fish, including sharks.

  • PDF