• Title/Summary/Keyword: methylenetetrahydrofolate reductase (NADPH2)

Search Result 2, Processing Time 0.015 seconds

Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate Production by Lactococcus lactis

  • Lu, Chuanchuan;Liu, Yanfeng;Li, Jianghua;Liu, Long;Du, Guocheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.154-162
    • /
    • 2021
  • L-5-methyltetrahydrofolate (5-MTHF) is one of the biological active forms of folate, which is widely used as a nutraceutical. However, low yield and serious pollution associated with the chemical synthesis of 5-MTHF hampers its sustainable supply. In this study, 5-MTHF production was improved by engineering the 5-MTHF biosynthesis pathway and NADPH supply in Lactococcus lactis for developing a green and sustainable biosynthesis approach. Specifically, overexpressing the key rate-limiting enzyme methylenetetrahydrofolate reductase led to intracellular 5-MTHF accumulation, reaching 18 ㎍/l. Next, 5-MTHF synthesis was further enhanced by combinatorial overexpression of 5-MTHF synthesis pathway enzymes with methylenetetrahydrofolate reductase, resulting in 1.7-fold enhancement. The folate supply pathway was strengthened by expressing folE encoding GTP cyclohydrolase I, which increased 5-MTHF production 2.4-fold to 72 ㎍/l. Furthermore, glucose-6-phosphate dehydrogenase was overexpressed to improve the redox cofactor NADPH supply for 5-MTHF biosynthesis, which led to a 60% increase in intracellular NADPH and a 35% increase in 5-MTHF production (97 ㎍/l). To reduce formation of the by-product 5-formyltetrahydrofolate, overexpression of 5-formyltetrahydrofolate cyclo-ligase converted 5-formyltetrahydrofolate to 5,10-methyltetrahydrofolate, which enhanced the 5-MTHF titer to 132 ㎍/l. Finally, combinatorial addition of folate precursors to the fermentation medium boosted 5-MTHF production, reaching 300 ㎍/l. To the best of our knowledge, this titer is the highest achieved by L. lactis. This study lays the foundation for further engineering of L. lactis for efficient 5-MTHF biosynthesis.

Association Study between Folate Pathway Gene Single Nucleotide Polymorphisms and Gastric Cancer in Koreans

  • Yoo, Jae-Young;Kim, Sook-Young;Hwang, Jung-Ah;Hong, Seung-Hyun;Shin, Ae-Sun;Choi, Il-Ju;Lee, Yeon-Su
    • Genomics & Informatics
    • /
    • v.10 no.3
    • /
    • pp.184-193
    • /
    • 2012
  • Gastric cancer is ranked as the most common cancer in Koreans. A recent molecular biological study about the folate pathway gene revealed the correlation with a couple of cancer types. In the folate pathway, several genes are involved, including methylenetetrahydrofolate reductase (MTHFR), methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), and methyltetrahydrofolate-homocysteine methyltransferase (MTR). The MTHFR gene has been reported several times for the correlation with gastric cancer risk. However, the association of the MTRR or MTR gene has not been reported to date. In this study, we investigated the association between the single nucleotide polymorphisms (SNPs) of the MTHFR, MTRR, and MTR genes and the risk of gastric cancer in Koreans. To identify the genetic association with gastric cancer, we selected 17 SNPs sites in folate pathway-associated genes of MTHFR, MTR, and MTRR and tested in 1,261 gastric cancer patients and 375 healthy controls. By genotype analysis, estimating odds ratios and 95% confidence intervals (CI), rs1801394 in the MTRR gene showed increased risk for gastric cacner, with statistical significance both in the codominant model (odds ratio [OR], 1.39; 95% CI, 1.04 to 1.85) and dominant model (OR, 1.34; 95% CI, 1.02 to 1.75). Especially, in the obese group (body mass index ${\geq}25kg/m^2$), the codominant (OR, 9.08; 95% CI, 1.01 to 94.59) and recessive model (OR, 3.72; 95% CI, 0.92 to 16.59) showed dramatically increased risk (p < 0.05). In conclusion, rs1801394 in the MTRR gene is associated with gastric cancer risk, and its functional significance need to be validated.