• Title/Summary/Keyword: methyl viologen (MV)

Search Result 35, Processing Time 0.021 seconds

Cadaverine is Transported into Vibrio vulnificus Through its CadB in Alkaline Environment

  • Kang, In-Hye;Kim, Eui-Jin;Lee, Jeong-K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1122-1126
    • /
    • 2009
  • The exogenously added cadaverine is effective in protecting Vibrio vulnificus from methyl viologen (MV)-induced superoxide stress at pH 8.5. Such a protective effect by cadaverine was not observed at pH 7.5. Consistently, the accumulated level of intracellular cadaverine at pH 8.5 is approximately four times as much as that of the control cell at pH 7.5. Cadaverine accumulation is not affected by MV. The protection of V. vulnificus by cadaverine from superoxide stress was abolished when cadB coding for the lysine-cadaverine antiporter was interrupted. However, the cadaverine-mediated protection was complemented with cadB DNA. Therefore, CadB of V. vulnificus not only acts as a lysine-cadaverine antiporter at acid pH to neutralize the external medium, but also mediates cadaverine uptake at alkaline pH to result in cell protection from superoxide stress.

Sodium nitroprusside mediates seedling development and attenuation of oxidative stresses in Chinese cabbage

  • Sung, Chang-Hyun;Hong, Jeum-Kyu
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.243-251
    • /
    • 2010
  • Nitric oxide (NO) has been shown to be involved in diverse physiological processes in microbes, animals and plants. In this study, the involvement of NO in the development and possible roles in oxidative stress protection of Chinese cabbage (Brassica rapa subsp. pekinensis cv. Samrack-ulgari) seedlings were investigated. Exogenous application of sodium nitroprusside (SNP) retarded root elongation, while increasing lateral root formation of Chinese cabbage. Plants showed no signs of external stress due to SNP application in true leaves. Cotyledons of 3-week-old Chinese cabbage plants were found to be highly sensitive to SNP application. Treated cotyledons displayed rapid tissue collapse and associated cell death. Although SNP application reduced root growth under normal growth conditions, it also enhanced methyl viologen (MV)-mediated oxidative stress tolerance. Analysis of SNP application to Chinese cabbage leaf disks, revealed SNP-induced tolerance against oxidative stresses by MV and $H_2O_2$, and evidence includes prevention of chlorophyll loss, superoxide anion (${O_2}^-$) accumulation and lipid peroxidation. This report supports a role for nitric oxide in modulating early seedling development, programmed cell death and stress tolerance in Chinese cabbage.

Development of Environmental Stress-Tolerant Plants by Gene Manipulation of Antioxidant Enzymes

  • Kwon, Suk-Yoon;Lee, Haeng-Soon;Kwak, Sang-Soo
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.88-93
    • /
    • 2001
  • Oxidative stress is one of the major limiting factor in plant productivity. Reactive oxygens species (ROS) generated during metabolic processes damage cellular functions and consequently lead to disease, senescence and cell death. Plants have evolved an efficient defense system by which the ROS is scavenged by antioxidant enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX). Attempts to reduce oxidative damages under the stress conditions have included the manipulation of 갠 scavenging enzymes by gene transfer technology. Increased SOD activities of transgenic plants lead to increased resistance against oxidative stresses derived from methyl viologen (MV), and from photooxidative damage caused by high light and low temperature. Transgenic tobacco plants overexpressing APX showed reduced damage following either MV treatment of photooxidative treatment. Overexpression of glutathion reductase (GR) leads to increase in pool of ascorbate and GSH, known as small antioxidant molecules. These results indicate through overexpression of enzymes involved in ROS-scavenging could maintain or improve the plant productivities under environment stress condition. In this study, the rational approaches to develop stress-tolerant plants by gene manipulation of antioxidant enzymes will be introduced to provide solutions for the global food and environmental problems in the $21^\textrm{st}$ century.

  • PDF

Enhanced Production of Benzoylformate Reductase in Enterococcus faecalis under Oxidative Stress Established by Natural Electron Carriers

  • Baik, Sang-Ho;Cho, Pan-Ki;Kim, Mee-Hae;Yun, Sei-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.104-109
    • /
    • 2003
  • Enhancement of the production of benzoylformate reductase (BFR) was attempted under oxidative stress established by natural electron carriers. -lipoic acid (LA), flavin adenine dinucleotide (FAD), and ubiquinone (UQ) did not inhibit growth of E. faecalis when their concentrations were as high as $10{\mu}M$, while $H_2O_2$ and methyl viologen ($MV^2+$) inhibited the bacterial growth. BFR activity in the bacterial extract had increased rapidly after 1 h of cultivation after the addition of $4{\mu}M$ of natural electron carriers, and the activity was maintained during further cultivation. BFR activity of the cells treated with the natural electron carriers was $40\%$ higher than that of the control. In the presence of $4{\mu}M\;H_2O_2\;and\;MV^2+$, BFR activity increased, reaching the highest activity at about 5 h cultivation, and then decreased with further cultivation. It seems that natural electron carriers not only stimulate the induction of BFR, but also stabilize the enzyme. BFR was hardly affected by LA, FAD, and UQ, while $H_2O_2\;and\;MV^2+$ inactivated the crude enzyme. The decrease of BFR activity in the presence of $H_2O_2\;and\;MV^2+$ might be ascribed to inactivation of the enzyme by the oxidants.

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF

Molecular Cloning and Expression of the Metallothionein Gene under Environmental Stresses in Sweet Potato (고구마 metallothionein 유전자의 클로닝 및 환경 스트레스 하에서 발현 분석)

  • Kim, Young-Hwa;Yu, Eun Jeong;Huh, Gyung-Hye
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1415-1420
    • /
    • 2017
  • The metallothionein (MT) gene (IbMT3) was selected from an EST library of suspension-cultured sweet potato cells. The MT gene, which is one of abundant ESTs in the library, is involved in stress regulation of cells and tissues. A full-length IbMT3 cDNA was obtained and analysis of its nucleotide sequence revealed that IbMT3 encoded a type 3 MT protein, based on its structural characteristics. The function of type 3 MT in plants is not yet known. Northern blot analysis showed stronger expression of IbMT3 in suspension-cultured cells than in sweet potato plant leaves. Since cell culture is known to impose a state of oxidative stress on cells, sweet potato plants were subjected to oxidative stress to investigate the transcriptional regulation of IbMT3. When the herbicide methyl viologen (MV) was administered for 6, 12, and 24 hr, IbMT3 transcription rapidly increased at 6 hr and then decreased. A cold treatment at $15^{\circ}C$ for 24 and 48 hr resulted in a gradual increase in IbMT3 expression. These findings indicate that IbMT3 expression is regulated in response to environmental and oxidative stress. IbMT3 isoform is expected to have antioxidant effects in sweet potato plants and may play an important role in cellular adaptation to oxidative stress.

Susceptibility of Two Potato Cultivars to Various Environmental Stresses (다양한 환경스트레스에 대한 감자 2품종의 감수성 분석)

  • Tang, Li;Kwon, Suk-Yoon;Sung, Chang-K;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.405-410
    • /
    • 2003
  • Environmental stress is the major limiting factor in plant productivity. In order to evaluate the stress tolerance of potato plants, leaf discs of two potato cultivars, Atlantic and Superior, were subjected to various stress conditions of high temperature, methyl viologen, H2O2, or $H_2O$$_2$. When potato leaf discs were exposed to high temperature at 37$^{\circ}C$ for 84 hr, Atlantic plants, a cultivar with high sensitivity to heat stress, showed about 20% higher membrane damage than Superior plants. When exposed to 2$\mu$M methyl violgen (MV), a superoxide generating non-selective herbicide, for 36 hr, Atlantic plants also showed about 38% higher membrane damage than Superior plants, and were more susceptible up to 10$\mu$M MV concentration tested. On treatment with 0.75M NaCl, Atlantic plants also had about 45% less chlorophyll contents in leaf discs than Superior plants. There was, however, no difference in chlorophyll content of two cultivars at higher NaCl concentrations. The effect of $H_2O$$_2$ on the two cultivars was mixed. At low $H_2O$$_2$ concentration (25 mM) , Superior plants were more susceptible to $H_2O$$_2$stress after 36 hr. However, at high $H_2O$$_2$ concentration (100 mM), Atlantic plants exhibited higher susceptibility after 36 hr. The results indicate that in vitro leaf discs reflecting the whole plants in this study will be useful for selection and characterization of elite transgenic potato plants with enhanced tolerance to environmental stress.

Phenylalanine Ammonia-Lyase Gene (NtPAL4) Induced by Abiotic Stresses in Tobacco (Nicotiana tabacum)

  • Han, Woong;Wang, Myeong-Hyeon
    • Korean Journal of Plant Resources
    • /
    • v.23 no.6
    • /
    • pp.535-540
    • /
    • 2010
  • Phenylalanine ammonia-lyase (PAL), a key enzyme of the phenylpropanoid biosynthesis pathway, is activated by a number of developmental and environmental cues. The coding region of the NtPAL4 gene was 2,154 bp in length, and its deduced protein was composed of 717 amino acids. Sequence analysis of NtPAL4 cDNA from tobacco (Nicotiana tabacum L.) revealed high structural similarity to PAL genes of other plant species. The NtPAL4 gene exists as a single copy in the tobacco plant, and its transcripts were strongly expressed in flowers and leaves. NtPAL4 expression was significantly induced in response to NaCl, mannitol, and cold treatments, but it was not induced by abscisic acid (ABA). NtPAL4 expression decreased gradually after treatment with ABA and $H_2O_2$; however, NtPAL4 transcripts accumulated after treatment with methyl viologen (MV). Our results suggest that the NtPAL4 gene may function in response to abiotic stresses.

Increase of resistance to oxidative stress induced by methyl viologen in progeny from a cross between two transgenic Petunia lines with NDPK and SOD genes

  • Lee, Su-Young;Lee, Jung-Lim;Kim, Dool-Yi
    • Journal of Plant Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.215-220
    • /
    • 2011
  • This study was conducted to investigate how to enhance resistance to oxidative stress in petunia progeny obtained by a crossing between transgenic plants, MnSOD (SOD2) ($T_4$) and NDPK2 ($T_2$), to develop transgenic petunia much more resistant to environmental stress. At the treatment of MV 200 ${\mu}M$, the progeny was significantly less damaged than its parental plants (SOD2- or NDPK2-transgenic lines) as well as wild type plants, implying its resistance to oxidative stress was enhanced compare to that of SOD2- or NDPK2- transgenic plants. In an expression of 11 quantitative traits, the progeny remained similar to control plants, although it infrequently displayed slightly longer or wider than either parental or wild type plants. In the expression of 6 qualitative traits, there was no significant difference between parental or non-transgenic control plants.

Cloning of Superoxide Dismutase (SOD) Gene of Lily 'Marcopolo' and Expression in Transgenic Potatoes

  • Park, Ji-Young;Kim, Hyun-Soon;Youm, Jung-Won;Kim, Mi-Sun;Kim, Ki-Sun;Joung, Hyouk;Jeon, Jae-Heung
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Differential display reverse transcription PCR (DDRT-PCR) analysis was performed on lily 'Marcopolo' bulb scale for isolation of expressed genes during bulblet formation. Cu/Zn lily-superoxide dismutase (LSOD) of 872 bp gene, with ability to scavenge reactive oxygen in stress environment, was isolated. Northern blot analysis showed expression levels of LSOD maximized 12 days after bulblet formation. Ti plasmid vectors were constructed with sense and antisense expressions of LSOD gene and transformed into potato. Southern blot analysis of transgenic potatoes revealed different copies of T-DNA were incorporated into potato genome. In transgenic potatoes, lily SOD gene was overexpressed in sense lines and not in antisense lines. In native polyacrylamide gel electrophoresis analysis, additional engineered LSOD was detected in sense overexpressed transgenic line only. Transgenic potatoes were subjected to oxidative stress, such as herbicide methyl viologen (MV). Transgenic potato lines with sense orientation exhibited increased tolerance to MV, whereas in antisense lines exhibited decreased tolerance. In vitro tuberization of transgenic potato with sense orientation was promoted, but was inhibited in transgenic potato with antisense orientation.