• Title/Summary/Keyword: methyl mercaptane

Search Result 7, Processing Time 0.023 seconds

A Study on Correlation of Odorous Compounds and Odor Substance occurring in Septic Tank and Sewer Pipe (하수관거 및 정화조에서 발생하는 악취물질이 복합악취에 미치는 영향에 관한 연구)

  • Song, Homyeon;Cho, Jeongil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.165-175
    • /
    • 2013
  • This study aims to analysis correlation in septic tank and sewer pipe between odor substances and complex odor. For the analysis, convert odor substances to odor intensity, and estimate the effect of odor substances on complex odor. As a result, both Hydrogen sulfide and Methyl mercaptane of specified offensive odor substances accounted for 29 percent of the effect of odor substances on complex odor. Hydrogen sulfide and Methyl mercaptane are major cause of odor from septic tank and sewer pipe. The result of this study is suggested to be used as a preliminary data for research on analysis complex odor and odor substances.

Preparation of Acryl Binder with Silane Type Chain Transfer Agent (실란계 사슬 이동제를 사용한 아크릴 바인더의 제조)

  • Kim, Jin-Gon;Shin, Min-Jae;Shin, Jae-Sup
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.351-356
    • /
    • 2012
  • Acryl binder is a representative organic additive for the manufacture of the display electronic equipment. Acryl binder is usually synthesized by radical copolymerization. Glycidyl methacrylate (GMA), methyl methacrylate (MMA), and methacrylic acid (MAA) were used in this copolymerization of acryl binder. In this study the silane type mercaptane compound was used as a chain transfer agent (CTA) to enhance the adhesion property of the acrylic binder. The CTA used in this experiment was (3-mercaptopropyl) trimethoxysilane (MPTMS). Molecular weight of the copolymer, thickness of the coating, transmittance, and adhesion property were measured. The molecular weight was controlled and the adhesion property was improved by using this silane type chain transfer agent.

Volatile Flavor Components of Cultivated Radish (Raphanus sativus L.) Sprout (재배한 무순의 향미성분)

  • 송미란
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • The consumption of radish ( Rhaphanus sativus L.) sprout, which is Cruciferae family, is increasing because of its pungent flavor and taste. Its volatile components were analyzed by SDE (simultaneous steam distillation & extraction) method and P&T(purge & cryogenic trapping) method. As a solvent, diethyl ether and diethyl ether : pentane mixture(2:1, v/v) were used in SDE method, and diethyl ether in P&T method. Analyzing by GC and GC-MS, the major component was sulfur compounds (19 species, peak area 76.6%) with diethyl ether, sulfur compounds(15. 44.0%) and hydrocarbons(23, 23.8%) with diethyl ether-pentane mixture in SDE method. Also, hydrocarbons(25, 84.1% ) was major component in P& T method. The major volatile component of fresh radish sprout were n-heptane, methyl pentane and that of boiled radish sprout were 4-methylthio-3-butenyl isothiocyanate, methyl mercaptane, 2,3-dimethyl disulfide. Low molecular volatile components were detected more by P& T method, but types and relative quantities of volatile components were measured less comparing to SDE method.

  • PDF

Measurement of odor compounds from odorous emissions source of Industrial Complex (산업단지에서 배출되는 악취원인물질의 규명)

  • An Sang-Young;Choi Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.81-89
    • /
    • 2005
  • As a typical example of simultaneous analysis of the odorous compounds, the volatile organic compounds from inventory sources in Seongseo industrial area were concentrated and analyzed with thermal desorber/GC/MSD, and major malodorous compounds were estimated. Odor intensity and odor concentration was analyzed simultaneously During a period from November in 2002 to December in 2003, this study was conducted to evaluate malodor emission characterization in major treatment facilities. The major components were Dimethyl sulfide, Dimethyl disulfide, Methyl mercaptane, Ammonia, Benzene, Toluene, m,p-xylene, o-xylene, Styrene, 1,2,4­T.M.B and 1,3,5-T.M.B. Among the six major inventory sources, the odor unit concentration of Night-soil disposal facilities was the highest, $669\~2344\;ou/m^{3}.$

Emission Characteristics of Odor Compounds from a Sewage Treatment Plant Near an Industrial Complex Area in Daegu City (대구시 산업단지 인근 하수처리장의 악취발생 특성)

  • Lee, Myeong-Sug;Kang, Dong-Hoon;Keum, Jong-Lok;Kwon, Byoung-Youne;Jo, Hang-Wook;Lee, Chan-Hyung;Kim, Eun-Deok;Lim, Ho-Jin;Song, Hee-Bong
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.2
    • /
    • pp.178-187
    • /
    • 2018
  • Objectives: This study evaluated the odor emission characteristics from a sewage treatment plant near an industrial complex area in Daegu City. Methods: Odor samples were collected from March 2017 to December 2017 and analyzed for specified offensive odor substances. The odor quotient and the odor contribution were calculated. Results: Ammonia, methyl mercaptane, hydrogen sulfide, dimethyl sulfide, acetaldehyde, propionylaldehyde, toluene, xylene, and methylethylketone were detected in all samples for monitoring the specified odor compounds. The result of contribution analysis is that hydrogen sulfide made the highest contribution in all processes, followed by acetaldehyde. Conclusion: The major components of odor can be determined by evaluating their degree of contribution to the odor intensity and the concentration of the individual odor component. To increase the effectiveness of odor reduction, rather than addressing high-concentration odor compounds, policies focused on materials with a high odor contribution are necessary.

Adsorption Characteristics of Acetone, Benzene, and Metylmercaptan by Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 제조한 활성탄에 의한 아세톤, 벤젠 및 메틸메르캅탄의 흡착특성)

  • Kam, Sang-Kyu;Kang, Kyung-Ho;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.663-669
    • /
    • 2017
  • Activated carbons were prepared from waste citrus peels using KOH, NaOH, and $ZnCl_2$ as activating chemicals. They were prepared at optimal conditions including the chemical ratio of 300%, activation time of 1.5h, and activation temperature of $900^{\circ}C$ for KOH, $700^{\circ}C$ for NaOH, and $600^{\circ}C$ for $ZnCl_2$, which were named as ACK, ACN, and ACZ, respectively. Using the activated carbons, their adsorption characteristics for three target gases such as acetone, benzene, and methylmercaptan (MM) were carried out in a batch reactor. The adsorption behavior of activated carbons for three target gases followed the Freundlich model better than the Langmuir. And the experimental kinetic data followed a pseudo-second-order kinetic model more than pseudo-first-order one. Following the intraparticle diffusion model suggested that the external mass transfer and particle diffusion were occurred simultaneously during the adsorption process.

Synthesis of Nano Structured Silica and Carbon Materials and Their Application (계면활성제를 이용한 나노 실리카 및 카본 소재의 합성과 응용)

  • Park Seungkyu;Kim Jongyun;Cho Wangoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.321-328
    • /
    • 2004
  • Nano silica ball and nano carbon ball are developed commercially by template synthesis method. Adsorption of unpleasant smelling substances such as ammonia, trimethylamine, acetaldehyde and methyl mercaptane onto nano carbon ball with hollow macroporous core/mesoporous shell structures, nano carbon ball, was investigated and compared with that onto odor adsorbent materials, activated carbon, commercially available. The adsorption and decomposition of malodor at nano carbon ball exhibited superior than those onto activated carbon. The physicochemical properties such as mesopore size distributions, large nitrogen BET specific surface area and large pore volume and decomposition of malodor were studied to interpret the predominant adsorption performance. The nano carbon ball is expected to be useful in many applications such as deodorizers, adsorbent of pollutants.