• Title/Summary/Keyword: methyl ether

Search Result 431, Processing Time 0.028 seconds

The Analysis of 1,4-Dioxane in Water Sample by Gas Chromatograph/Mass Spectrometer and Risk Assessment (기체크로마토그래프/질량분석계에 의한 물시료 중 1,4-dioxane의 분석 및 위해성 평가)

  • 홍지은;표희수;박송자
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.3
    • /
    • pp.219-224
    • /
    • 2003
  • 1,4-Dioxane is used as a solvent for lacquers, paints, varnish removers, dye baths and printing compositions. And it is also used for detergent preparations, cosmetics, deodorants and fumigants. A method is described for the determination of 1,4-dioxane in water samples by GC/MS. The extraction recoveries were studied for some solvents and solvent volume ratio were investigated using r-butyl methyl ether (MTBE). Optimum condition was obtained by the liquid-liquid extraction using the 10 mL of MTBE for 10 mL of water. Method detection limit of 1,4-dioxane in the 20 mL of water samples was 0.05 ng/mL. It could be determined in the range of 0.24∼240 ng/mL in treated water, and in the range of 0.69∼81.9 ng/mL in raw water, respectively. Risk assessments with 1,4-dioxane exposure by drinking water ingestion were carried out. Based on the results of analysis, chronic daily intake of 1,4-dioxane was 2.22${\times}$10$\^$-4/ mg/kg/day and excess cancer risk was calcu-lated to be 2.44${\times}$10$\^$-6/.

Methyl-Tertiary Butyl Ether(MTBE) and BTEX Inside and Outside Apartments with Different Construction Age

  • Jo, Wan-Kuen;Lee, Jong-Hyo
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Only limited information is available on the measured exposure levels of residents according to the construction age of apartments. As such, present study was conducted to measure and to compare the bedroom, living-room, and outdoor air levels of MTBE and benzene, toluene, ethyl benzene and m,p-xylene(BTEX) in both newer and older apartments. For both newer and older apartments, all the compounds except for MTBE showed significantly higher levels in bedrooms or living-rooms as compared to the outdoor concentrations. The ratio of bedroom or living-room median concentration to outdoor concentration was close to 1 for MTBE, whereas it was larger than 1 for other target compounds. It was also found that the bedroom and living-room appeared to have similar indoor sources and sinks for BTEX, but not for MTBE. The median concentration ratios of the newer apartments to the older apartments ranged from 1.63 to 1.81, depending upon the compounds. In contrast, the MTBE concentrations did not differ significantly between the newer and older apartments, thereby suggesting that although newer buildings could emit more VOCs, this is not applicable to all VOCs. Conclusively, the findings of present study should be considered, when designing exposure studies associated with VOC emissions in buildings and/or managing indoor air quality according to construction age of buildings.

Lithium Ion Concentration Dependant Ionic Conductivity and Thermal Properties in Solid Poly(PEGMA-co-acrylonitrile) Electrolytes

  • Kim, Kyung-Chan;Roh, Sae-Weon;Ryu, Sang-Woog
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • The lithium ion concentration dependant ionic conductivity and thermal properties of poly(ethylene glycol) methyl ether methacrylate (PEGMA)/acrylonitrile-based copolymer electrolytes with $LiClO_4$ have been studied by differential scanning calorimetry (DSC), linear sweep voltammetry (LSV) and AC complex impedance measurements. In systems with 11 wt% of acrylonitrile all liquid electrolytes were obtained regardless of lithium ion concentration. Complex impedance measurements with stainless steel electrodes give ambient ionic conductivities $8.1\times10^{-6}\sim1.4\times10^{-4}S cm^{-1}$. On the other hand, a hard and soft films at ambient temperature were obtained in copolymer electrolyte system consists of 15 wt% acrylonitrile with 6 : 1 and 3 : 1 of [EO] : [Li] ratio, respectively. DSC measurements indicate the crystalline melting temperature of poly(PEGMA) disappeared completely after addition of $LiClO_4$ in this system due to the complex formation between ethylene oxide (EO) unit and lithium salt. As a result, free standing film with room temperature ionic conductivity of $1.7\times10^{-4}S cm^{-1}$ and high electrochemical stability up to 5.5V was obtained by controlling of acrylonitrile and lithium salt concentration.

Development of a Validated Determination of Methylsulfonylmethane in Dietary Supplement by Gas Chromatography (기체크로마토그래피를 이용한 식이보충제에서 메틸설포닐메탄의 검증된 분석법 개발)

  • Park, Sang-Wook;Lee, Wonjae
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.141-147
    • /
    • 2015
  • The convenient determination of methylsulfonylmethane (MSM) for a commercially available dietary supplement was developed using gas chromatography (GC)-flame ionization detector (FID). Chromatography was performed on a capillary column ($0.32mm\;I.D{\times}30m$, $0.25{\mu}m$) coated with dimethylpolysiloxane using diethylene glycol methyl ether as an internal standard. The performance characteristics of GC were evaluated in terms of selectivity, linearity, precision, accuracy, recovery, limit of detection (LOD) and limit of quantification (LOQ). The calibration curve was highly linear (the coefficient of determination: 0.9979) within the concentration range of $10.0{\sim}800.0{\mu}g/mL$ for MSM. The recoveries for three fortified concentrations were 96.7~97.1%, 96.6~97.3% and 96.8~97.2%, respectively. The LOD and LOQ of the method were $0.29{\mu}g/mL$ and $0.97{\mu}g/mL$, respectively. All obtained results were acceptable according to the guidelines of the Association of Official Analytical Chemists for dietary supplements. Thus, the validated analytical method using the GC-FID system is suitable for the determination of MSM in dietary supplement formulations for quality control.

A Study on the Synthesis and Properties of Environmental Friendly Pressure Sensitive Adhesive for Manufacturing Electronic Products (전자제품 제조용 친환경 점착제의 합성과 물성에 대한 연구)

  • Cho, Ur Ryong;Oh, Ji Hwan;Kim, Ji Hyun;Jung, Hyeon Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.12-16
    • /
    • 2016
  • Toluene-free pressure sensitive adhesives were synthesized by using butyl acrylate (BA), 2-hydroxy ethyl acrylate, methyl methacrylate, acrylic acid (AA) as monomers and ethyl acetate as a solvent. The polymerization recipes were designed by changing 1, 3, 5 part per hundreds monomer (phm) of AA content on the basis of 100 BA parts. Two crosslinking agents, ethyl glycol diglycidyl ether (EDGE) and isophorone diisocyanate (IPDI) were added to the synthesized polymers to increase adhesion due to crosslinking. In the measurement of properties, holding power, peel strength, and initial tackiness increased with AA content due to crosslinking between carboxyl group in AA and epoxy group in EDGE and isocyanate group in IPDI. In the comparison of two crosslinking agents, EDGE showed better in the three properties than IPDI by better reaction of epoxy group of EDGE to carboxyl group of AA.

A Method to Monitor Dutasteride in Rat Plasma Using Liquid-Liquid Extraction and Multiple Reaction Monitoring: Comparisons and Validation

  • Kang, Myung Joo;Cho, Ha Ra;Lee, Dong Hoon;Yeom, Dong Woo;Choi, Young Wook;Choi, Yong Seok
    • Mass Spectrometry Letters
    • /
    • v.5 no.3
    • /
    • pp.79-83
    • /
    • 2014
  • Three different dutasteride extraction methods were compared and a method based on liquid-liquid extraction (LLE) using methyl tert-butyl ether and methylene chloride was proved to be more effective than others for the extraction of dutasteride and finasteride, the internal standard (IS), from rat plasma. Additionally, a method composed of the LLE extraction, liquid chromatography, and multiple reaction monitoring (MRM) to target dutasteride and IS was validated by assessing specificity, linearity ($r^2$ = 0.9993, 5 - 400 ng/mL), sensitivity (the limit of detection: 4.03 ng/mL; the limit of quantitation: 12.10 ng/mL), accuracy (intra-day: 89.4 - 105.9%; inter-day: 84.9 - 100.9%), precision (intra-day: 0.8 - 6.9%; inter-day: 2.9 - 15.9%), and recovery (84.7 - 107.8%). Since the validated method was successfully applied to a pharmacokinetic study of dutasteride, it can be useful for the pharmacokinetic evaluation of newly developed dutasteride formulations.

In vitro Metabolism of Stanozolol to 3'-Hydroxystanozolol in the Liver S-9 Fraction of Polychlorinated Biphenyl-treated Rats (Polychlorinated biphenyl 전처리한 횐쥐 간장의 S-9 분획에서 Stanozolol의 Hydroxylation 대사체의 생성)

  • 권오승;류재천
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.379-383
    • /
    • 2000
  • Stanozolol (STZ, 17$\alpha$-methyl-17$\beta$-hydroxy-5$\alpha$-androstano-(3,2-c) pyrazole), an anabolic steroid, is an abused drug by body-builders or atheletes, as well as medicine for treatment of aplastic anemia and vascular thrombosis. In human volunteers, the major urinary metabolite of STZ was reported to be 3'-hydroxystanozolol that was identified by gas chromatography-mass selective detector (GC/MSD). The objective of this experiment is to investigate the in vitro metabolism of STZ in liver S-9 faction of polychlorinated biphenyl-induced rats. Reaction mixture including STZ as substrate and the S-9 faction was extracted with diethyl ether and quantified by the selected ion monitoring mode of GC/MSD. The selected concentration of substrate STZ is 100 nmole and the selected time for incubation in the reaction mixture was determined to 60 min. The amount of 3'-hydroxystanozolol produced was increased by about 6-fold in the reaction medium including the liver S-9 fraction of polychlorinated biphenyl-induced rats, compared to that of untreated rats. Inhibitors of cytochrome P450, SKF-525A and 7,8-benzoflavone, decreased the production of 3'-hydroxystanozolol by about 89~100% and 65~75%, respectively; In conclusion, hydroxylation of STZ into 3'-hydroxystanozolol is confirmed by GC/MSD and is catalyzed by cytochrome P450.

  • PDF

Reaction of Lithium Gallium Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Choe, Jeong Hun;Yun, Mun Yeong;Yun, Jong Hun;Jeong, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.416-421
    • /
    • 1995
  • The approximate rates and stoichiometry of the reaction of excess lithium gallium hydride with selected organic compounds containing representative functional groups were examined under the standard conditions (diethyl ether, 0 $^{\circ}C)$ in order to compare its reducing characteristics with lithium aluminum hydride and lithium borohydride previously reported, and enlarge the scope of its applicability as a reducing agent. Alcohols, phenol, and amines evolve hydrogen rapidly and quantitatively. However lithium gallium hydride reacts with only one active hydrogen of primary amine. Aldehydes and ketones of diverse structure are rapidly reduced to the corresponding alcohols. Conjugated aldehyde and ketone such as cinnamaldehyde and methyl vinyl ketone are rapidly reduced to the corresponding saturated alcohols. p-Benzoquinone is mainly reduces to hydroquinone. Caproic acid and benzoic acid liberate hydrogen rapidly and quantitatively, but reduction proceeds slowly. The acid chlorides and esters tested are all rapidly reduced to the corresponding alcohols. Alkyl halides and epoxides are reduced rapidly with an uptake of 1 equiv of hydride. Styrene oxide is reduced to give 1-phenylethanol quantitatively. Primary amides are reduced slowly. Benzonitrile consumes 2.0 equiv of hydride rapidly, whereas capronitrile is reduced slowly. Nitro compounds consumed 2.9 equiv of hydride, of which 1.9 equiv is for reduction, whereas azobenzene, and azoxybenzene are inert toward this reagent. Cyclohexanone oxime is reduced consuming 2.0 equiv of hydride for reduction at a moderate rate. Pyridine is inert toward this reagent. Disulfides and sulfoxides are reduced slowly, whereas sulfide, sulfone, and sulfonate are inert under these reaction conditions. Sulfonic acid evolves 1 equiv of hydrogen instantly, but reduction is not proceeded.

Nitric Oxide Inhibitory Constituents from the Fruits of Amomum tsao-ko

  • Kim, Jun Gu;Le, Thi Phuong Linh;Hong, Hye Ryeong;Han, Jae Sang;Ko, Jun Hwi;Lee, Seung Hyun;Lee, Mi Kyeong;Hwang, Bang Yeon
    • Natural Product Sciences
    • /
    • v.25 no.1
    • /
    • pp.76-80
    • /
    • 2019
  • Bioactivity-guided fractionation of MeOH extract of the dried fruits of Amomum tsao-ko led to isolation of nine compounds (1 - 9). Their structures were elucidated by spectroscopic methods including extensive 1D and 2D-NMR, as alpinetin (1), naringenin-5-O-methyl ether (2), naringenin (3), hesperetin (4), 2',4',6'-trihydroxy-4-methoxy chalcone (5), tsaokoin (6), boesenbergin B (7), 4-hydroxyboesenbergin B (8), and tsaokoarylone (9). Of these, compound 8 was isolated from a natural source for the first time, which was previously reported as a synthetic product. The isolated compounds (1 - 9) were tested for their inhibitory effects on LPS-induced nitric oxide production in RAW 264.7 macrophages. Among them, three chalcone derivatives (compounds 5, 7, and 8) and a diarylheptanoid (compound 9) exhibited significant inhibitory activity on the NO production with $IC_{50}$ values ranging from 10.9 to $22.5{\mu}M$.

Impact of carbon dioxide on the stability of the small-scale structures by trapping the material properties

  • Zhou, Yunlong;Wang, Jian
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • The existence of active material in the environment causes the small-scale systems to be sensitive to the actual environment. Carbon dioxide is one of the active materials that exists a lot in the air conditions of the living environment. However, in some applications, the carbon dioxide-coated is used to improve the performance of systems against the destructive factors such as the corrosion; nevertheless, in the current research, the stability analysis of a carbon dioxide capture mechanism-coated beam is investigated according to the mathematical simulation of a rectangular composite beam utilizing the modified couple stress theory. The composite mechanism of carbon dioxide trapping is made of a polyacrylonitrile substrate that supports a cross-link polydimethylsiloxane gutter layer as the carbon dioxide mechanism trapping. Three novel types of carbon dioxide trapping mechanism involving methacrylate, poly (ethylene glycol) methyl ether methacrylate, and three pedant methacrylates are considered, which were introduced by Fu et al. (2016). Finally, according to introducing the methodology of carbon dioxide (CO2) trapping, the impact of various effective parameters on the stability of composite beams will be analyzed in detail.