• 제목/요약/키워드: methoxyverapamil

검색결과 2건 처리시간 0.017초

개의 신장기능에 미치는 메톡시베라파밀의 영향 (Effect of Methoxyverapamil on Renal Function of Dogs)

  • 고석태;이한구;나한광
    • 약학회지
    • /
    • 제36권1호
    • /
    • pp.46-55
    • /
    • 1992
  • Methoxyverapamil, $Ca^{2+}$ channel blocker, when given intravenously by means of bolus, produced the transient increase of urine flow, and then methoxyverapamil was infused in this experiments. Methoxyverapamil, when infused into vein, elicited the increase of urine flow ancampanied with the increased glomeralar filtration rate(GFR), renal plasma flow(RPF), excretion amounts of sodium and potassium in urine($E_{Na},\;E_k$) and osmolar clearance(Cosm), wherease produced the no change of free water clearance($C_{H2O}$) and the reduction of reabsorption rates of sodium and potassium in reral tubules($R_{Na},\;R_k$). Methoxyverapamil, when infused into a renal artery, exhibited the diuretic action in only infused Kidney, at this time changes of renal function were the same aspect to that of intravenously infused methoxyverapamil. Methoxyverapamil, when infused into a carotid artery, exhibited the decreased urine flow along with the reduction of Cosm, $C_{H2O}\;and\;E_{Na}$. Above results suggest that methoxyverapamil possess both the diuretic action by direct action in kidney and antidiuretic action through the central function.

  • PDF

Methoxyverapamil의 신장작용에 미치는 신 신경제거의 영향 (Effect of Renal Denervation on Renal Action of Methoxyverapamil in Dogs)

  • 고석태;이수정;유강준
    • Biomolecules & Therapeutics
    • /
    • 제2권3호
    • /
    • pp.229-235
    • /
    • 1994
  • In dogs, renal denervation did not affect the diuretic action accompanied with renal hemodynamic chanties and inhibition of electrolytes reabsorption rates in renal tubules by methoxyverapamil infused into the vein or into a renal artery, while renal denervation blocked the antidiuretic action due to the decreased free water and osmolar clearances along with the reduced sodium amounts excreted in urine by methoxyverpamil infused into the carotid artery. These experimental results suggest that methoxyverapamil may cause diuresis by direct action in kidney but the antidiuretic action through central function mediated by renal nerves.

  • PDF