• Title/Summary/Keyword: methoxysilane

Search Result 4, Processing Time 0.019 seconds

Preparation of Silica Membrane by CVD of Phenyl-Substituted Methoxysilane and $CO_2$ Separation (페닐기로 치환된 Methoxysilane의 CVD에 의한 실리카 분리막의 제조 및 $CO_2$ 분리)

  • Kim, Seong-Su;Seo, Bong-Guk;Lee, Yun-Bok;Park, Hong-Chae;Kim, Tae-Ok
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.622-624
    • /
    • 2001
  • The CVD film of methoxysilane derived from diphenyldimethoxysilane(DPDMS) was formed on the outer surface of a porous ${\alpha}-alumina$ support tube coated(via dipping-drying-calcining) with a boehmite sol(0.3 mol-Al/L). The resulting silica membrane($500^{\circ}C,\;P_{fe}\;=\;130\;Pa$) showed a permeance of $5.18{\times}10^{-8}\;mol\;{\cdot}\;m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}\;for\;CO_2$ and a permselectivity of 13.35 for $CO_2/N_2\;at\;30^{\circ}C$.

  • PDF

Apatite Formation on Polythylene Modified with Silanols by Grafting of Vinyltrimethoxysilane and Subsequent Hydrolysis

  • Kokubo, Tadashi;Uenoyama, Mayo;Kim, Hyun-Min;Minoda, Masahiko;Miyamoto, Takeaki;Nakamura, Takashi
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.265-269
    • /
    • 1999
  • Polyethylene was modified with silanol groups on its surface by photografting of vinyltrimethoxysilane in vapor phase by using benzophenon as a polymerization initiator and by hydrolyzing the methoxysilane groups into the silanol groups with HCI solution. The modified polyethylene formed a dense and homogeneous apatite layer on its surface in a solution with ion concentrations 1.5 times those of human blood plasma within 21 days. This kind of biomimetic process could provide techniques for fabricating apatite-polymer composites with three dimensional structure analogous to the natural bone.

  • PDF

Synthesis of Hybrid Sol Based on ZrO2-SiO2 System and their Coating Properties

  • Lee, Sang-Hoon;Park, Won-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.349-352
    • /
    • 2004
  • Organic-inorganic hybrid sol based on ZrO$_2$-SiO$_2$ system was prepared by sol-gel process. Firstly, ZrO$_2$ non-aqueous precursor sol was synthesized and then organosilane compounds which include epoxy silane (GPTS; 3-g1ycidoxypropyl tri-methoxysilane) and acryl silane (ACS; (3-(tri-methoxysilyl)propylmethacrylate)) were added to ZrO$_2$precursor sol for hybridization. Finally, com-mercial silica sol was added to improve the mechanical properties. Synthesized organic-inorganic Zr-hybrid sol was coated on polycarbonate substrate for enhancing it’s mechanical properties, especially hardness. Vicker’s hardness of polycarbonate sub strate was increased from 13.6 to 17.8 MPa and its pencil hardness was increased from 2 to 7 H, respectively, after coating and drying at 10$0^{\circ}C$ for 30 min.

The Effect of Thermal Stability of Cu(I) Precursors on the Deposition in the Metal Organic Chemical Vapor Deposition (MOVCD에 있어서 구리(l)전구체들의 열적 안정성이 증착에 미치는 영향)

  • Park, Man-Young;Lee, Shi-Woo
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.345-353
    • /
    • 1998
  • Metal organic chemical vapor deposition (MOCVD) of copper using three Cu( I ) precursors. (hfac)Cu (VTMS) (hfac= hexafluoroacetylacetonate, VTMS= vinyltrimethylsilane), (hfac)Cu(VTMOS) (VTMOS= vinyltri¬methoxysilane) and (hfac)Cu(A TMS) (A TMS= allyltrimethylsilane) was studied. The thermal stability and the gase¬ous phase reaction mechanism of Cu( I ) precursors were identified using $^1H$-, $^I3C$-NMR and Fourier transform infra¬red spectroscopy. It was found out that thermal stability of liquid phase (hfac)Cu(VTMS) and (hfac)Cu(VTMOS) were better than that of (hfac)Cu(A TMS) using FT - NMR. From in-situ FT - IR experiments, the disproportion reaction of Cu(hfac). the decomposition reaction of Cu(hfac), and cracking of free hfac ligand were observed. Also the effect of gaseous phase reaction on the deposition rates and film properties was investigated. The minimum temperature that deposition of copper films from (hfac)Cu(A TMS) was as low as 60$^{\circ}$C and such a low deposition temperature compared with those of other Cu( I ) precursors is believed to be related with weaken Cu- A TMS bond.

  • PDF