• 제목/요약/키워드: method of sciences

검색결과 18,825건 처리시간 0.046초

Detection of EBV-encoded Small RNA from Diffuse Large B-cell Lymphoma Patients by RT-PCR Method

  • Yoo, Tae Hyun;Lee, Min Ho;Park, Min;Lee, Jaewang;Woo, Hyun Jun;Kim, Hyun Woo;Yang, Ji Yeong;Kwon, Hye Jin;Yeon, Min Ji;Kim, Jong-Bae
    • 대한의생명과학회지
    • /
    • 제21권4호
    • /
    • pp.227-232
    • /
    • 2015
  • Epstein-Barr virus (EBV) has a pathogenic role in several lymphomas including diffuse large B-cell lymphoma (DLBCL). In this study, we detected EBV from formalin-fixed paraffin embedded (FFPE) tissues of DLBCL patients by RT-PCR and compared the sensitivity of the RT-PCR method to in situ hybridization (ISH) method. The RNA was extracted from 91 FFPE samples with DLBCL and amplified with primers targeting EBV-encoded small RNA (EBER) by RT-PCR. When using the RT-PCR method, 13 of 91 patients (14.3%) were positive and among these 13 cases, 7 cases (7.7%) were from > 50-year-old patients that is classified as EBV positive DLBCL of the elderly. In previous results using ISH method, 3 of 91 patients (3.3%) were positive and 2 case (2.4%) were older than 50-year-old. These results indicate that RT-PCR method used in this study shows a higher sensitivity than ISH method. The ratio of male versus female among the EBV positive samples was 1.2:1 with the ratio of male higher. If RT-PCR method having high sensitivity is used simultaneously as well as the ISH method providing the information of the EBV positive cellular location, it is expected that EBV will be more accurately detected.

Effect of Test Zone Selection for Evaluating Bending Strength of Lumber

  • Pang, Sung-Jun;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권5호
    • /
    • pp.392-398
    • /
    • 2013
  • This study investigated the effect of test zone selection for evaluating bending strength of visually graded lumber. This will contribute to the understanding of two different methods under different standards. In method I, the major defect was randomly placed in the test specimen. In method II, the major defect was randomly placed in the maximum moment zone (MMZ). The results showed that the method II is more accurate for reflecting the effect of defects governing the grade of lumber. Unless the maximum strength-reducing defect (MSRD) is placed in MMZ, the evaluated value would be higher than that of MSRD. For evaluating the modulus of rupture (MOR) of visually graded lumber in test set-up of Method I, the Eq. (5) needs to be considered.

Assessment of the Purity of Emodin by Quantitative Nuclear Magnetic Resonance Spectroscopy and Mass Balance

  • Park, Sojung;Choi, Yu-Jin;Do, Giang Hoang;Seo, Eun Kyoung;Hyun, Seunghun;Lee, Dongho
    • Natural Product Sciences
    • /
    • 제25권3호
    • /
    • pp.222-227
    • /
    • 2019
  • Quantitative nuclear magnetic resonance (qNMR) is a well-established method adopted by international pharmacopoeia for quantitative and purity analyses. Emodin is a type of anthraquinone, well known as the main active component of Fabaceae, Polygonaceae and Rhamnaceae. Purity analysis of emodin is usually performed by using the high-performance liquid chromatography (HPLC)-UV method. However, it cannot detect impurities such as salts, volatile matter, and trace elements. Using the qNMR method, it is possible to determine the compound content as well as the nature of the impurities. Several experimental parameters were optimized for the quantification, such as relaxation delay, spectral width, number of scans, temperature, pulse width, and acquisition time. The method was validated, and the results of the qNMR method were compared with those obtained by the HPLC and mass balance analysis methods. The qNMR method is specific, rapid, simple, and therefore, a valuable and reliable method for the purity analysis of emodin.

A Power Estimation Method for ASIPs Considering Data Types of Variables in Application Programs

  • Kim, Tsutomu ura;Shibahara, Shin-ichi;Yoshinori Takeuchi;Masaharu Imai;Akira Kitajima;Michiaki Muraoka
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.387-390
    • /
    • 2000
  • This paper proposes an efficient and accurate power estimation method for Application Specific Instruction set Processors (ASIPs). Proposed method takes advantage of the data types of variables in application program to be executed on the ASIP. According to the experimental results, the efficiency of proposed method was more than 1000 times as high as that of conventional RTL based power estimation method, and the estimation error was within 10% compared to a conventional gate-level accurate power estimation method

  • PDF

PRECONDITIONED GAUSS-SEIDEL ITERATIVE METHOD FOR Z-MATRICES LINEAR SYSTEMS

  • Shen, Hailong;Shao, Xinhui;Huang, Zhenxing;Li, Chunji
    • 대한수학회보
    • /
    • 제48권2호
    • /
    • pp.303-314
    • /
    • 2011
  • For Ax = b, it has recently been reported that the convergence of the preconditioned Gauss-Seidel iterative method which uses a matrix of the type P = I + S (${\alpha}$) to perform certain elementary row operations on is faster than the basic Gauss-Seidel method. In this paper, we discuss the adaptive Gauss-Seidel iterative method which uses P = I + S (${\alpha}$) + $\bar{K}({\beta})$ as a preconditioner. We present some comparison theorems, which show the rate of convergence of the new method is faster than the basic method and the method in [7] theoretically. Numerical examples show the effectiveness of our algorithm.

에어로졸의 배경농도 산정기법에 관한 연구 (On the Determination Method of Background Aerosol Concentration)

  • 허정화;김상우;윤순창;김지형;김만해;김유미
    • 대기
    • /
    • 제23권4호
    • /
    • pp.501-511
    • /
    • 2013
  • In this study, we estimate the background concentration of black carbon (BC) mass concentration measured at Gosan Climate Observatory from January 2008 to December 2011 by applying six methods: (1) Mean and Median (2) Trimmed mean method deployed in Interagency Monitoring of Protected Visual Environments (IMPROVE) network program (hereafter, IMPROVE method), (3) Concentration-frequency distribution analysis method, (4) Advanced Global Atmospheric Gases Experiment (AGAGE) method (hereafter, AGAGE method), (5) Kaufman et al. (2001) method (hereafter, Kaufman method), and (6) Airmass sector analysis. The background concentration of BC mass concentrations is estimated to be about 400~900 ng $m^{-3}$, but each method shows a large difference. The estimated background concentration, in general, is arranged in the order of: mean > IMPROVE method > median > Kaufman method > concentration-frequency distribution analysis method > AGAGE method. The background concentration estimated by the airmass sector analysis is found to be about 550 ng $m^{-3}$ which is lower than those estimated by other methods. When we apply the same analytical period (i.e., 4-day and 6-day) to both AGAGE and Kaufman methods, the estimated background concentrations are quite similar. However, further researches on the development of statistical method for estimating background concentration for various gas-phase and particulate pollutants under different environment are needed.

AN ADAPTIVE FINITE DIFFERENCE METHOD USING FAR-FIELD BOUNDARY CONDITIONS FOR THE BLACK-SCHOLES EQUATION

  • Jeong, Darae;Ha, Taeyoung;Kim, Myoungnyoun;Shin, Jaemin;Yoon, In-Han;Kim, Junseok
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.1087-1100
    • /
    • 2014
  • We present an accurate and efficient numerical method for solving the Black-Scholes equation. The method uses an adaptive grid technique which is based on a far-field boundary position and the Peclet condition. We present the algorithm for the automatic adaptive grid generation: First, we determine a priori suitable far-field boundary location using the mathematical model parameters. Second, generate the uniform fine grid around the non-smooth point of the payoff and a non-uniform grid in the remaining regions. Numerical tests are presented to demonstrate the accuracy and efficiency of the proposed method. The results show that the computational time is reduced substantially with the accuracy being maintained.

Development and Test of 2.5-Dimensional Electromagnetic PIC Simulation Code

  • Lee, Sang-Yun;Lee, Ensang;Kim, Khan-Hyuk;Seon, Jongho;Lee, Dong-Hun;Ryu, Kwang-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권1호
    • /
    • pp.45-50
    • /
    • 2015
  • We have developed a 2.5-dimensional electromagnetic particle simulation code using the particle-in-cell (PIC) method to investigate electromagnetic phenomena that occur in space plasmas. Our code is based on the leap-frog method and the centered difference method for integration and differentiation of the governing equations. We adopted the relativistic Buneman-Boris method to solve the Lorentz force equation and the Esirkepov method to calculate the current density while maintaining charge conservation. Using the developed code, we performed test simulations for electron two-stream instability and electron temperature anisotropy induced instability with the same initial parameters as used in previously reported studies. The test simulation results are almost identical with those of the previous papers.

CONVERGENCE OF SSOR MULTISPLITTING METHOD FOR AN M-MATRIX

  • Yun, Jae-Heon;Han, Yu-Du;Oh, Se-Young
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.273-282
    • /
    • 2007
  • In this paper, we study the convergence of both the multisplitting method and the relaxed multisplitting method associated with SOR or SSOR multisplittings for solving a linear system whose coefficient matrix is an M-matrix.

GEGENBAUER WAVELETS OPERATIONAL MATRIX METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • UR REHMAN, MUJEEB;SAEED, UMER
    • 대한수학회지
    • /
    • 제52권5호
    • /
    • pp.1069-1096
    • /
    • 2015
  • In this article we introduce a numerical method, named Gegenbauer wavelets method, which is derived from conventional Gegenbauer polynomials, for solving fractional initial and boundary value problems. The operational matrices are derived and utilized to reduce the linear fractional differential equation to a system of algebraic equations. We perform the convergence analysis for the Gegenbauer wavelets method. We also combine Gegenbauer wavelets operational matrix method with quasilinearization technique for solving fractional nonlinear differential equation. Quasilinearization technique is used to discretize the nonlinear fractional ordinary differential equation and then the Gegenbauer wavelet method is applied to discretized fractional ordinary differential equations. In each iteration of quasilinearization technique, solution is updated by the Gegenbauer wavelet method. Numerical examples are provided to illustrate the efficiency and accuracy of the methods.