• Title/Summary/Keyword: methacrylate

Search Result 1,266, Processing Time 0.02 seconds

Nano-Ruthenium Oxide Polymeric Composite pH Electrodes (나노 Ruthenium Oxide 고분자 복합재료 pH전극)

  • Park, Jongman
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.4
    • /
    • pp.269-274
    • /
    • 2018
  • Surface renewable nano-$RuO_2$/poly(methyl methacrylate) polymeric composite pH electrodes were prepared. The composite electrode with 53 wt% of nano-$RuO_2$ showed similar good response characteristics to nano-$IrO_2$ composite electrode reported earlier. It showed response slope of -58.7 mV/pH, response time of <1 s, surface renewability of $-57.0{\pm}0.3mV/pH$ (n=5) and long time stability for a month as well as low interferences but high interferences by electrochemically active species like $I^-$ and $Fe(CN){_6}^{3-}$. However, the response slope and time became worse at higher pH than 9 compared to those of nano-$IrO_2$ composite electrodes possibly due to the difference of physical properties resulting from higher content of nano-$RuO_2$ in polymeric composite matrix.

Performance evaluation of soil-embedded plastic optical fiber sensors for geotechnical monitoring

  • Zhang, Cheng-Cheng;Zhu, Hong-Hu;Shi, Bin;She, Jun-Kuan;Zhang, Dan
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.297-311
    • /
    • 2016
  • Based on the distributed fiber optic sensing (DFOS) technique, plastic optical fibers (POFs) are attractive candidates to measure deformations of geotechnical structures because they can withstand large strains before rupture. Understanding the mechanical interaction between an embedded POF and the surrounding soil or rock is a necessary step towards establishing an effective POF-based sensing system for geotechnical monitoring. This paper describes a first attempt to evaluate the feasibility of POF-based soil deformation monitoring considering the POF-soil interfacial properties. A series of pullout tests were performed under various confining pressures (CPs) on a jacketed polymethyl methacrylate (PMMA) POF embedded in soil specimens. The test results were interpreted using a fiber-soil interaction model, and were compared with previous test data of silica optical fibers (SOFs). The results showed that the range of CP in this study did not induce plastic deformation of the POF; therefore, the POF-soil and the SOF-soil interfaces had similar behavior. CP was found to play an important role in controlling the fiber-soil interfacial bond and the fiber measurement range. Moreover, an expression was formulated to determine whether a POF would undergo plastic deformation when measuring soil deformation. The plasticity of POF may influence the reliability of measurements, especially for monitored geo-structures whose deformation would alternately increase and decrease. Taken together, these results indicate that in terms of the interfacial parameters studied here the POF is feasible for monitoring soil deformation as long as the plastic deformation issue is carefully addressed.

Morphology of Poly(butyl acrylaye)/Poly(methyl methacrylate) Composite Latex Prepared by 2-stage Dispersion Polymerization (중합공정에 따른 PBA/PMMA Composite Latex 모폴로지의 연구)

  • Lee, Ki-Chang;Choe, Hyeon-Seong
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.60-69
    • /
    • 2011
  • The various types of PBA/PMMA composite latexes were prepared by $2.1\;{\mu}m$ PBA seeded batch and seeded semi-continuous dispersion polymerization. The morphology of the PBA/PMMA composite latexes by seeded batch process was found to be closely dependant on the weight ratios of methanol/water in polymerization medium and of PBA seed/MMA at the second stage. In general, egg, snowman, confetti, peanut-like nonspherical composite latex particles were formed with increasing amount of water and MMA as a result of the occurrence of the phase separation between PBA seed and PMMA. The morphology of the PBA/PMMA composite latexes by seeded semi-continuous process was controlled by the addition time of MMA, especially, spherical shaped core(PBA)/shell(PMMA) composite latex particles were prepared under the monomer-starved condition at the second stage.

Esterification of Methacrylic acid with Ethylene glycol over Heteropolyacid supported on ZSM-5 (ZSM-5 위에 지지된 Heteropolyacid 하에서 Methacrylic acid와 Ethylene glycol의 에스테르화 반응)

  • Prabhakarn, A.;Fereiro, J.A.;Subrahmanyam, Ch.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.14-18
    • /
    • 2011
  • Esterification of methacrylic acid with ethylene glycol was carried out over Heteropolyacids [HPA: $H_4SiW_{12}O_{40}$ (STA) and $H_3PW_{12}O_{40}$ (PTA)] supported on ZSM-5. For comparison, the same reaction was carried out over unsupported HPA, $H_2SO_4$, $BF_3$ and PTSA. Among the catalysts studied, HPA showed better activity compared to $H_2SO_4$, $BF_3$ and PTSA. Catalytic activity was compared with HPA supported ZSM-5 catalysts. Typical results indicated that 30 wt% PTA supported on ZSM-5 showed nearly the same activity as that of bulk PTA. It was found that the reaction follows first order kinetics with respect to methacrylic acid. The reaction products were identified by $^1H$-NMR and FT-IR.

THE LEVEL OF RESIDUAL MONOMER IN INJECTION MOLDED DENTURE BASE MATERIALS

  • Lee Hyeok-Jae;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.360-368
    • /
    • 2003
  • Statement of Problem: The residual monomer of denture base materials causes hypersensitivity on oral mucosa and intereferes with the mechanical properties of the cured resin. The amount of residual monomer is influenced by materials, curing cycle, processing method, and etc. Purpose: The aim of this study was to investigate the residual methyl methacrylate(MMA) content of injection molded denture base polymer, and to compare this with the self-cured resin and the conventional compression molded heat-cured resin. Materials and Methods: Disc shaped test specimens (50mm in diameter and 3mm thick) were prepared in a conventional flasking technique with gypsum molding. One autopolymerized denture base resins (Vertex Sc. Dentimex. Netherlands) and two heat-cured denture base resins (Vertex RS. Dentimex. Netherlands, Ivocap. Ivoclar Vivadent, USA) were used. The three types of specimens were processed according to the manufacturer's instruction. After polymerization, all specimens were stored in the dark at room temperature for 7 days. There were 10 specimens in each of the test groups. 3-mm twist drills were used to obtain the resin samples and 650mg of the drilled sample were collected for each estimation. Gas chromatography (Agillent 6890 Plus Gas Chromatograph, Agillent Co, USA) was used to determine the residual MMA content of 10 test specimens of each three types of polymer. Results: The residual monomer content of injection molded denture base resins was $1.057{\pm}0.141%$. The residual monomer content of injection molded denture base resins was higher than that of compression molded heat cured resin ($0.867{\pm}0.169%$). However, there was no statistical significant difference between two groups (p>0.01). The level of residual monomer in self cured resin($3.675{\pm}0.791$) was higher than those of injection molded and compression molded heat cured resins (p<0.01). Conclusion: With respect to ISO specification pass / fail test (2.2% mass fraction) of residual monomer, injection molding technique($1.057{\pm}0.141%$) is a clinically useful and safe technique in terms of residual monomer.

The effect of acrylamide incorporation on the thermal and physical properties of denture resins

  • Ayaz, Elif Aydogan;Durkan, Rukiye;Bagis, Bora
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.110-117
    • /
    • 2013
  • PURPOSE. Polymethyl methacrylate (PMMA) is the most commonly used denture base material despite typically low in strength. The purpose of this study was to improve the physical properties of the PMMA based denture base resins (QC-20, Dentsply Ltd., Addlestone, UK; Stellon, AD International Ltd, Dentsply, Switzerland; Acron MC; GC Lab Technologies Inc., Alsip, Japan) by copolymerization mechanism. MATERIALS AND METHODS. Control group specimens were prepared according to the manufacturer recommendations. In the copolymer groups; resins were prepared with 5%, 10%, 15% and 20% acrylamide (AAm) (Merck, Hohenbrunn, Germany) content according to the moleculer weight ratio, respectively. Chemical structure was characterized by a Bruker Vertex-70 Fourier transform infrared spectroscopy (FTIR) (Bruker Optics Inc., Ettlingen, Germany). Hardness was determined using an universal hardness tester (Struers Duramin, Struers A/S, Ballerup, Denmark) equipped with a Vickers diamond penetrator. The glass transition temperature ($T_g$) of control and copolymers were evaluated by Perkin Elmer Diamond DSC (Perkin Elmer, Massachusetts,USA). Statistical analyses were carried out using the statistical package SPSS for Windows, version 15.0 (SPSS, Chicago, IL, USA). The results were tested regarding the normality of distribution with the Shapiro Wilk test. Data were analyzed using ANOVA with post-hoc Tukey test (P<.01). RESULTS. The copolymer synthesis was confirmed by FTIR spectroscopy. Glass transition temperature of the copolymer groups were higher than the control groups of the resins. The 10%, 15% and 20% copolymer groups of Stellon presented significantly higher than the control group in terms of hardness. 15% and 20% copolymer groups of Acron MC showed significantly higher hardness values when compared to the control group of the resin. Acrylamide addition did not affect the hardness of the QC-20 resin significantly. CONCLUSION. Within the limitation of this study, it can be concluded that copolymerization of PMMA with AAm increased the hardness value and glass transition temperature of PMMA denture base resins.

Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials

  • Soygun, Koray;Bolayir, Giray;Boztug, Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.153-160
    • /
    • 2013
  • PURPOSE. This in vitro study intended to investigate the mechanical and thermal characteristics of Valplast, and of polymethyl methacrylate denture base resin in which different esthetic fibers (E-glass, nylon 6 or nylon 6.6) were added. MATERIALS AND METHODS. Five groups were formed: control (PMMA), PMMA-E glass, PMMA-nylon 6, PMMA-nylon 6.6 and Valplast resin. For the transverse strength test the specimens were prepared in accordance with ANSI/ADA specification No.12, and for the impact test ASTM D-256 standard were used. With the intent to evaluate the properties of transverse strength, the three-point bending (n=7) test instrument (Lloyd NK5, Lloyd Instruments Ltd, Fareham Hampshire, UK) was used at 5 mm/min. A Dynatup 9250 HV (Instron, UK) device was employed for the impact strength (n=7). All of the resin samples were tested by using thermo-mechanical analysis (Shimadzu TMA 50, Shimadzu, Japan). The data were analyzed by Kruskal-Wallis and Tukey tests for pairwise comparisons of the groups at the 0.05 level of significance. RESULTS. In all mechanical tests, the highest values were observed in Valplast group (transverse strength: $117.22{\pm}37.80$ MPa, maximum deflection: $27.55{\pm}1.48$ mm, impact strength: $0.76{\pm}0.03$ kN). Upon examining the thermo-mechanical analysis data, it was seen that the E value of the control sample was 8.08 MPa, higher than that of the all other samples. CONCLUSION. Although Valplast denture material has good mechanical strength, its elastic modulus is not high enough to meet the standard of PMMA materials.

Effect of solution temperature on the mechanical properties of dual-cure resin cements

  • Kang, En-Sook;Jeon, Yeong-Chan;Jeong, Chang-Mo;Huh, Jung-Bo;Yun, Mi-Jung;Kwon, Yong-Hoon
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.133-139
    • /
    • 2013
  • PURPOSE. This study was to evaluate the effect of the solution temperature on the mechanical properties of dualcure resin cements. MATERIALS AND METHODS. For the study, five dual-cure resin cements were chosen and light cured. To evaluate the effect of temperature on the specimens, the light-cured specimens were immersed in deionized water at three different temperatures (4, 37 and $60^{\circ}C$) for 7 days. The control specimens were aged in a $37^{\circ}C$ dry and dark chamber for 24 hours. The mechanical properties of the light-cured specimens were evaluated using the Vickers hardness test, three-point bending test, and compression test, respectively. Both flexural and compressive properties were evaluated using a universal testing machine. The data were analyzed using a two way ANOVA with Tukey test to perform multiple comparisons (${\alpha}$=0.05). RESULTS. After immersion, the specimens showed significantly different microhardness, flexural, and compressive properties compared to the control case regardless of solution temperatures. Depending on the resin brand, the microhardness difference between the top and bottom surfaces ranged approximately 3.3-12.2%. Among the specimens, BisCem and Calibra showed the highest and lowest decrease of flexural strength, respectively. Also, Calibra and Multilink Automix showed the highest and lowest decrease of compressive strength, respectively compared to the control case. CONCLUSION. The examined dual-cure resin cements had compatible flexural and compressive properties with most methacrylate-based composite resins and the underlying dentin regardless of solution temperature. However, the effect of the solution temperature on the mechanical properties was not consistent and depended more on the resin brand.

Enhanced stability of NADH/dehydrogenase mixture system by water-soluble phospholipid polymers

  • Fukazawa, Kyoko;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.1
    • /
    • pp.37-46
    • /
    • 2016
  • To maintain activity in a coenzyme/enzyme mixture system, such as ${\beta}$-nicotinamide adenine dinucleotide (NADH)/dehydrogenase, the water-soluble 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers as an additive were synthesized and investigated for their stabilizing function. The inhibitor for the NADH/dehydrogenase reaction was spontaneously formed when the NADH was stored in the dehydrogenase solution. Therefore, we hypothesized that if the additive polymer could interact with an inhibitor without any adverse effect on the dehydrogenase, the activity in the NADH/dehydrogenase mixture could be maintained. We selected lactose dehydrogenase (LDH) as the enzyme, and the NADH was dissolved and incubated at $37^{\circ}C$ in the LDH solution containing the polymers. The phospholipid polymers used in this study were poly(MPC) (PMPC), poly(MPC-co-3-trimethylammonium-2-hydroxypropyl methacrylate chloride) (PMQ) and poly[MPC-co-potassium 3-methacryloyloxypropyl sulfonate ($MSO_3$)] ($PMMSO_3$). The poly($MSO_3$) was used as a reference. For the PMQ and $PMSO_3$ aqueous solutions, the activity of the NADH/LDH mixture system decreased with incubation time as the same level or lower than that in the Tris buffered solution in the absence of the polymers. However, for the poly($MPC-co-MSO_3$) ($PMMSO_3$) aqueous solution, the activity of the NADH/LDH mixed system was six times higher than that in the buffered solution even after a 3-days incubation. The LDH activity was 1.5-1.8 times higher in the presence of the $PMMSO_3$ compared with that in the $PMSO_3$ solution. The mixture of two polymers, poly(MPC) and poly($MSO_3$), did not produce any stabilization. Thus, both the MPC and $MSO_3$ units in the polymer chain had important and cooperative effects for stabilizing the NADH/LDH mixture.

Development of Respiration Sensors Using Plastic Optical Fiber for Respiratory Monitoring Inside MRI System

  • Yoo, Wook-Jae;Jang, Kyoung-Won;Seo, Jeong-Ki;Heo, Ji-Yeon;Moon, Jin-Soo;Park, Jang-Yeon;Lee, Bong-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.235-239
    • /
    • 2010
  • In this study, we have fabricated two types of non-invasive fiber-optic respiration sensors that can measure respiratory signals during magnetic resonance (MR) image acquisition. One is a nasal-cavity attached sensor that can measure the temperature variation of air-flow using a thermochromic pigment. The other is an abdomen attached sensor that can measure the abdominal circumference change using a sensing part composed of polymethyl-methacrylate (PMMA) tubes, a mirror and a spring. We have measured modulated light guided to detectors in the MRI control room via optical fibers due to the respiratory movements of the patient in the MR room, and the respiratory signals of the fiber-optic respiration sensors are compared with those of the BIOPAC$^{(R)}$ system. We have verified that respiratory signals can be obtained without deteriorating the MR image. It is anticipated that the proposed fiber-optic respiration sensors would be highly suitable for respiratory monitoring during surgical procedures performed inside an MRI system.