• Title/Summary/Keyword: meteorological image

Search Result 185, Processing Time 0.021 seconds

DETERMINATION OF USER DISTRIBUTION IMAGE SIZE AND POSITION OF EACH OBSERVATION AREA OF METEOROLOGICAL IMAGER IN COMS

  • Seo, Jeong-Soo;Seo, Seok-Bae;Kim, Eun-Kyou;Jung, Sung-Chul
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.228-231
    • /
    • 2006
  • In this paper, requirements of Meteorological Administration about Meteorological Imager (MI) of Communications, Ocean and Meteorological Satellite (COMS) is analyzed for the design of COMS ground station and according to the analysis results, the distribution image size of each observation area suitable for satellite Field Of View (FOV) stated at the requirements of meteorological administration is determined and the precise satellite FOV and the size of distribution image is calculated on the basis of the image size of the determined observation area. The results in this paper were applied to the detailed design for COMS ground station and also are expected to be used for the future observation scheduling and the scheduling of distribution of user data.

  • PDF

Survey of System Architectures of Meteorological Satellite Image Processing System for Building NMSC Image Processing Systems (국가기상위성센터 영상처리 시스템 구축을 위한 국내외 기상위성 영상처리 시스템 아키텍처 분석)

  • Kuk, Seung-Hak;Seo, Yong-Jin;Kim, Hyeon-Soo;SaKong, Young-Bo;Lee, Bong-Ju;Jang, Jae-Dong;Oh, Hyun-Jong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.101-116
    • /
    • 2012
  • In this paper, we have surveyed the existing architectures of the image processing systems for several meteorological satellites and identified issues which are taken into consideration to construct the advanced meteorological satellite image processing system that is being developed by NMSC(National Meteorological Satellite Center). Most of the existing systems provide the functionalities of the image acquisition, the image processing, the data management, and the data dissemination. Those systems have some common problems with respect to system integration and system maintenance. To solve these problems, NOAA, NWS and ESA suggest new system architectures to improve the existing systems. This paper introduces domestic and foreign approaches to build the satellite image processing systems and studies some issues and strategies for developing those systems.

Backup Site Operation Of COMS Image Data Acquisition And Control System (천리안위성 영상 수신 및 처리에 대한 백업 지상국 운영)

  • Cho, Young-Min;Kwon, Eun Joo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • The backup site operation of the Image Data Acquisition and Control System (IDACS) for Communication Ocean Meteorological Satellite (COMS) is discussed in terms of the ground station configuration, image data processing, and the characteristics of backup activities for both the meteorological image data and the ocean image data. The well-performed backup operation of the COMS IDACS is also confirmed with the first three years normal operation results from April, 2011 to March, 2014. The operation results are analyzed through statistical approach to provide the achieved operational performance of the image data reception, preprocessing, and broadcast.

DETERMINATION OF USER DISTRIBUTION IMAGE SIZE AND POSITION OF EACH OBSERVATION AREA OF METEOROLOGICAL IMAGER IN COMS (COMS 기상탑재체의 관측영역별 사용자 배포 영상의 크기 및 위치결정)

  • Seo, Jeong-Soo;Seo, Seok-Bae;Kim, Eun-Kyou
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.415-424
    • /
    • 2006
  • In this paper, requirements of Meteorological Administration about Meteorological Image. (MI) of Communications, Ocean and Meteorological Satellite (COMS) is analyzed for the design of COMS ground station and according to the analysis results, the distribution image size of each observation area suitable for satellite Field Of View (FOV) stated at the requirements of meteorological administration is determined and the precise satellite FOV and the size of distribution image is calculated on the basis of the image size of the determined observation area. The results in this paper were applied to the detailed design for COMS ground station and also are expected to be used for the future observation scheduling and the scheduling of distribution of user data.

A Design of Image Preprocessing Subsystem for COMS (통신해양기상위성 영상 데이터 전처리 시스템 설계)

  • Seo Seok-Bae;Koo In-Hoi;Ahn Sang-Il;Kim Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.390-393
    • /
    • 2006
  • 본 논문에서는 현재 개발 중인 통신해양기상위성(COMS : Communication, Ocean and Meteorological Satellite)의 데이터를 처리하는 영상 데이터 전처리 시스템 (IMPS, IMage Preprocessing Subsystem)의 설계 과정과 예비설계 결과를 설명한다.

  • PDF

Architecture Design for the Image Processing System of Meteorological Satellite (기상위성 영상처리 기본체계 아키텍처 설계)

  • Kuk, Seung-Hak;Choi, Chang-Min;Seo, Yong-Jin;Kim, Hyeon-Soo;SaKong, Young-Bo;Lee, Bong-Ju;Jang, Jae-Dong;Oh, Hyun-Jong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.79-93
    • /
    • 2012
  • This paper suggests a system architecture for the advanced meteorological satellite image processing system that is developing by NMSC(National Meteorological Satellite Center). The meteorology satellite image processing system has basically the image acquisition, the image processing, the data management, and the data dissemination functionalities. However, the existing system has some problems with respect to system integration as well as maintenance to accommodate new satellites and/or the new image processing systems for them which will be developed in the near future. To cope with these problems we propose a new system architecture for the advanced meteorology satellite image processing system. To do this we select as the architectural drivers the quality attributes such as modifiability, inter-operability, extendability, reusability, and platform independency and design the architecture to achieve such quality attributes. We expect that the new approach will solve current issues such as system integration, system dependency, or data management problems and will provide easy ways to incorporate new systems and to maintain them.

Objective Cloud Type Classification of Meteorological Satellite Data Using Linear Discriminant Analysis (선형판별법에 의한 GMS 영상의 객관적 운형분류)

  • 서애숙;김금란
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.1
    • /
    • pp.11-24
    • /
    • 1990
  • This is the study about the meteorological satellite cloud image classification by objective methods. For objective cloud classification, linear discriminant analysis was tried. In the linear discriminant analysis 27 cloud characteristic parameters were retrieved from GMS infrared image data. And, linear cloud classification model was developed from major parameters and cloud type coefficients. The model was applied to GMS IR image for weather forecasting operation and cloud image was classified into 5 types such as Sc, Cu, CiT, CiM and Cb. The classification results were reasonably compared with real image.

COMS METEOROLOGICAL IMAGER SPACE LOOK SIDE SELECTION ALGORITHM

  • Park, Bong-Kyu;Lee, Sang-Cherl;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.100-103
    • /
    • 2008
  • COMS(Communication, Ocean and Meteorological Satellite) has multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. MI has 4 IR and 1 visible channel. In order to improve the quality of IR image, two calibration sources are used; black body image and cold space look data. In case of COMS, the space look is performed at 10.4 degree away from the nadir in east/west direction. During space look, SUN or moon intrusions are strictly forbidden, because it would degrade the quality of collected IR channel calibration data. Therefore we shall pay attention to select space look side depending on SUN and moon location. This paper proposes and discusses a simple and complete space look side selection logic based on SUN and moon intrusion event file. Computer simulation has been performed to analyze the performance of the proposed algorithm in term of east/west angular distance between space look position and hazardous intrusion sources; SUN and moon.

  • PDF

LOSSY JPEG CHARACTERISTIC ANALYSIS OF METEOROLOGICAL SATELLITE IMAGE

  • Kim, Tae-Hoon;Jeon, Bong-Ki;Ahn, Sang-Il;Kim, Tae-Young
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.282-285
    • /
    • 2006
  • This paper analyzed the characteristics of the Lossy JPEG of the meteorological satellite image, and analyzed the quality of the Lossy JPEG compression, which is proper for the LRIT(Low Rate Information Transmission) to be serviced to the SDUS(Small-scale Data Utilization Station) system of the COMS(Communication, Oceans, Meteorological Satellite). Since COMS is to start running after 2008, we collected the data of the MTSAT-1R(Multi-functional Transport Satellite -1R) for analysis, and after forming the original image to be used to LRIT by each channel and time zone of the satellite image data, we set the different quality with the Lossy JPEG compression, and compressed the original data. For the characteristic analysis of the Lossy JPEG, we measured PSNR(Peak Signal to Noise Rate), compression rate and the time spent in compression following each quality of Lossy JPEG compression. As a result of the analysis of the satellite image data of the MTSAT-1R, the ideal quality of the Lossy JPEG compression was found to be 90% in the VIS Channel, 85% in the IR1 Channel, 80% in the IR2 Channel, 90% in the IR3 Channel and 90% in the IR4 Channel.

  • PDF

JPEG COMPRESSION PERFORMANCE ANALYSIS OF MTSAT-1R HRIT_LRIT

  • Kim, Tae-Young;Kim, Tae-Hoon;Ahn, Sang-Il;Sa Kong, Young-Bo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.286-289
    • /
    • 2006
  • This paper analyzed the JPEG compression performance of MTSAT-1R(Multi-functional Transport Satellite - 1 Replacement), which is offering the LRIT/HRIT(Low Rate Information Transmissio / High Rate Information Transmission) service now, in order to design the system regarding LRIT/HRIT of COMS(Communication, Ocean and Meteorological Satellite). To do so, we analysed Lossy and Lossless JPEG compression performance regarding the MTSAT-1R LRIT/HRIT data for 10 days, and made comparison to the image characteristics, and understood the JPEG compression characteristics regarding JPEG compression of geostationary meteorological satellite. This result of compression performance analysis is expected to be a reference not only to the system design and realization of COMS LRIT/HRIT but also to those who develop other meteorological satellite receiving systems.

  • PDF