• Title/Summary/Keyword: meteorological elements

Search Result 200, Processing Time 0.022 seconds

The Relation of between the Architectural and Urban Form, Microclimate Factors and Buildings Energy Consumption (도시, 건축형태 및 미기후로 인한 건축물군의 에너지 소비량의 관계)

  • Lee, Gunwon;Jeong, Yunnam;Moon, Yoon-Deok
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.10
    • /
    • pp.923-934
    • /
    • 2019
  • This study investigates correlations between the impacts of urban and building form and microclimate on the energy consumption of buildings. It applies microscopic elements such as urban form, building form and character, and microclimate as factors in the energy consumption of buildings. To this end, the energy consumption of selected buildings in Seoul in August of 2017 was analyzed. Based on microscopic elements within a radius of 500 meters of 23 Automated Weather Station (AWS) measurement points selected by the Meteorological Office of the City of Seoul. With the exception of a few elements, the urban form and character elements demonstrate a significant relation to the energy consumption of buildings. It is also found that microclimate elements such as wind speed and humidity are pertinent to the energy consumption of buildings. It is helpful in that it suggests results for establishing more effective policies and strategies for enhancing the sustainability and resilience of cities.

Orographic and Ocean Effects Associated with a Heavy Snowfall Event over Yeongdong Region (영동지역 겨울철 강수와 연관된 산악효과와 해양효과)

  • Cho, Kuh-Hee;Kwon, Tae-Young
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.57-71
    • /
    • 2012
  • Influences of orographic and ocean effect, which depend on the detailed geographic characteristics, upon winter time (December-February) precipitation in the Yeongdong region are investigated. Most of precipitation events in the Yeongdong region during the wintertime are associated with moist northeasterly (coming from the northeast direction) winds and also the spatial distribution of precipitation shows a great difference between Mountain area (Daegwallyeong) and Coastal area (Gangneung). The linear correlation coefficient between the meteorological variables obtained from NCEP/NCAR Reanalysis Data and precipitation amount for each precipitation type is calculated. Mountain type precipitation is dominated by northeasterly wind speed of the low level (1000 hPa and 925 hPa) and characterized with more precipitation in mountain area than coastal area. However, Coastal type precipitation is affected by temperature difference between ocean and atmosphere, and characterized with more precipitation in coastal area than mountain area. The results are summarized as follows; In the case of mountain type precipitation, the correlation coefficient between wind speed at 1000 hPa (925 hPa) and precipitation amount at Daegwallyeong is 0.60 (0.61). The correlation is statistical significant at 1% level. In the case of coastal type precipitation, the correlation coefficient of temperature difference between ocean and 925 hPa (850 hPa) over the East sea area and precipitation amount at Gangneung is 0.33 (0.34). As for the mountain type precipitation, a detailed analysis was conducted in order to verify the relationship between precipitation amount at Daegwallyeong and low level wind speed data from wind profiler in Gangneung and Buoy in the East Sea. The results also show the similar behavior. This result indicates that mountain type precipitation in the Yeongdong region is closely related with easterly wind speed. Thus, the statistical analysis of the few selected meteorological variables can be a good indicator to estimate the precipitation totals in the Yeongdong region in winter time.

Data Mining of Gas Accident and Meteorological Data in Korea for a Prediction Model of Gas Accidents (국내 가스사고와 기상자료의 데이터마이닝을 이용한 가스사고 예측모델 연구)

  • Hur, Young-Taeg;Shin, Dong-Il;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • Analysis on gas accidents by types occurred has been made to prevent the recurrence of accidents, through analysis of past history of gas accident occurring environment. The number of gas accidents has been decreasing, but still accidents are occurring steadily. Gas-using environment and gas accidents are estimated to be closely connected since gas-using types are changing by time period, weather, etc. in terms of accident contents. As a result of analysing gas accidents by 7 meteorological elements, such as the mean temperature, the highest temperature, the lowest temperature, relative humidity, the amount of clouds, precipitation and wind velocity, it has been found out that gas accidents are influenced by temperature or relative humidity, and accident occurs more frequently when the sky is clean and wind velocity is slow. Possibility of gas accidents can be provided in real time, using the proposed model made to predict gas accidents in connection with the weather forecast service. Possibility and number of gas accidents will be checked real time by connecting to the business system of Korea Gas Safety Corp., and it is considered that it would be positively used for preventing gas accidents.

Changes of Inorganic Nutrient Contents in Leaf of 'Niitaka' Pear and Inorganic Nutrient Contents of Leaf Influenced by Meteorological Elements (배 신고 품종의 잎 내 무기성분의 시기별 함량 변화와 잎 내 무기성분 함량에 미치는 기후요인)

  • Kim Ik-Youl;Ryu Jong-Ho;Kim Mi-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.3
    • /
    • pp.192-200
    • /
    • 2005
  • This study was conducted to investigate inorganic nutrient contents in spur leaf and shoot leaf of 'Niitaka' pear during the growing season and leaf inorganic nutrient contents as influenced by meteorological elements. The contents of N, P, K, and Mg were decreased in spur leaf during their vegetative growth, while Ca and Mn increased. The contents of N, P, K, Mg, and Fe showed no differences between spur leaf and shoot leaf. However Ca, Mn, Zn, and Cu contents were higher in spur leaf than those in shoot leaf, but B content was lower in spur leaf than those in shoot leaf. The content of N in shoot leaf was positively correlated with mean temperature, whereas negatively correlated with maximum temperature. The content of P in spur leaf was negatively correlated with maximum temperature. The content of Ca in spur leaf was negatively correlated with mean temperature, whereas positively correlated with maximum and minimum temperature. The contents of Mg and B in shoot and spur leaf were positively correlated with mean temperature, whereas negatively correlated with maximum and minimum temperature. The contents of Ca and Mn showed significant differences between spur leaf and shoot leaf at mid-July to early August. These results suggest that sampling is important to distinguish between spur leaf and shoot leaf for diagnosis of nutrient conditions in pear trees.

Estimation of Atmospheric Deposition Velocities and Fluxes from Weather and Ambient Pollutant Concentration Conditions : Part I. Application of multi-layer dry deposition model to measurements at north central Florida site

  • Park, Jong-Kil;Eric R. Allen
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.31-42
    • /
    • 2000
  • The dry deposition velocities and fluxes of air pollutants such as SO2(g), O3(g), HNO3(g), sub-micron particulates, NO3(s), and SO42-(s) were estimated according to local meteorological elements in the atmospheric boundary layer. The model used for these calculations was the multiple layer resistance model developed by Hicks et al.1). The meteorological data were recorded on an hourly basis from July, 1990 to June, 1991 at the Austin Cary forest site, near Gainesville FL. Weekly integrated samples of ambient dry deposition species were collected at the site using triple-fiter packs. For the study period, the annual average dry deposition velocities at this site were estimated as 0.87$\pm$0.07 cm/s for SO2(g), 0.65$\pm$0.11 cm/s for O3(g), 1.20$\pm$0.14cm/s for HNO3(g), 0.0045$\pm$0.0006 cm/s for sub-micron particulates, and 0.089$\pm$0.014 cm/s for NO3-(s) and SO42-(s). The trends observed in the daily mean deposition velocities were largely seasonal, indicated by larger deposition velocities for the summer season and smaller deposition velocities for the winter season. The monthly and weekly averaged values for the deposition velocities did not show large differences over the year yet did show a tendency of increased deposition velocities in the summer and decreased values in the winter. The annual mean concentrations of the air pollutants obtained by the triple filter pack every 7 days were 3.63$\pm$1.92 $\mu\textrm{g}$/m3 for SO42-, 2.00$\pm$1.22 $\mu\textrm{g}$/m-3 for SO2, 1.30$\pm$0.59 $\mu\textrm{g}$/m-3 for HNO3, and 0.704$\pm$0.419 $\mu\textrm{g}$/m3 for NO3-, respectively. The air pollutant with the largest deposition flux was SO2 followed by HNO3, SO42-(S), and NO3-(S) in order of their magnitude. The sulfur dioxide and NO3- deposition fluxes were higher in the winter than in the summer, and the nitric acid and sulfate deposition fluxes were high during the spring and summer.

  • PDF

The Recent Climatic Characteristic and Change in the Republic of Korea based on the New Normals (1991~2020) (신평년(1991~2020년)에 기반한 우리나라 최근 기후특성과 변화에 관한 연구)

  • Hongjun Choi;Jeongyong Kim;Youngeun Choi;Inhye Hur;Taemin Lee;Sojung Kim;Sookjoo Min;Doyoung Lee;Dasom Choi;Hyun Min Sung;Jaeil Kwon
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.477-492
    • /
    • 2023
  • Based on the new climate normals (1991~2020), annual mean, maximum and minimum temperature is 12.5℃, 18.2℃, and 7.7℃, respectively while annual precipitation is 1,331.7 mm, the annual mean wind speed is 2.0 m s-1, and the relative humidity is 67.8% in the Republic of Korea. Compared to 1981~2010 normal, annual mean temperature increased by 0.2℃, maximum and minimum temperatures increased by 0.3℃, while the amount of precipitation (0.7%) and relative humidity (1.1%) decreased. There was no distinct change in annual mean wind speed. The spatial range of the annual mean temperature in the new normals is large from 7.1 to 16.9℃. Annual precipitation showed a high regional variability, ranging from 787.3 to 2,030.0 mm. The annual mean relative humidity decreased at most weather stations due to the rise in temperature, and the annual mean wind speed did not show any distinct difference between the new and old normals. With the addition of a warmer decade (2011~2020), temperatures all increased consistently and in particular, the increase in the maximum temperature, which had not significantly changed in previous decades, was evident. The increasing trend of annual and summer precipitation by the 2010s has disappeared in the new normals. Among extreme climate indices, MxT30 (Daily maximum temperature ≥ 33℃ days), MnT25 (Daily minimum temperature ≥ 25℃ days), and PH30 (1 hour maximum precipitation ≥ 30 mm days) increased while MnT-10 (Daily minimum temperature < -10℃ days) and W13.9 (Daily maximum wind speed ≥ 13.9 m/s days) decreased at a statistically significant level. It is thought that a detailed study on the different trends of climate elements and extreme climate indices by region should be conducted in the future.

Emission Characteristics of Elemental Constituents in Fine Particulate Matter Using a Semi-continuous Measurement System (준 실시간 측정시스템을 이용한 미세입자 원소성분 배출특성 조사)

  • Park, Seung-Shik;Ondov, John M.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.190-201
    • /
    • 2010
  • Fine particulate matter < $1.8{\mu}m$ was collected as a slurry using the Semicontinuous Elements in Aerosol Sampler with time resolution of 30-min between May 23 and 27, 2002 at the Sydney Supersite, Florida, USA. Concentrations of 11 elements, i.e., Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn, in the collected slurry samples were determined off-line by simultaneous multi-element graphite furnace atomic absorption spectrometry. Temporal profiles of $SO_2$ and elemental concentrations combined with meteorological parameters such as wind direction and wind speed indicate that some transient events in their concentrations are highly correlated with the periods when the plume from an animal feed supplement processing facility influenced the Sydney sampling site. The peaking concentrations of the elemental species during the transient events varied clearly as the plume intensity varied, but the relative concentrations for As, Cr, Pb, and Zn with respect to Cd showed almost consistent values. During the transient events, metal concentrations increased by factors of >10~100 due to the influence of consistent plumes from an individual stationary source. Also the multi-variate air dispersion receptor model, which was previously developed by Park et al. (2005), was applied to ambient $SO_2$ and 8 elements (Al, As, Cd, Cr, Cu, Fe, Pb, and Zn) measurements between 20:00 May 23 and 09:30 May 24 when winds blew from between 70 and $85^{\circ}$, in which animal feed processing plant is situated, to determine emission and ambient source contributions rates of $SO_2$ and elements from one animal feed processing plant. Agreement between observed and predicted $SO_2$ concentrations was excellent (R of 0.99; and their ratio, $1.09{\pm}0.35$) when one emission source was used in the model. Average ratios of observed and predicted concentrations for As, Cd, Cr, Pb, and Zn varied from $0.83{\pm}0.26$ for Pb to $1.12{\pm}0.53$ for Cd.

Performance Analysis of Low-Order Surface Methods for Compact Network RTK: Case Study

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Compact Network Real-Time Kinematic (RTK) is a method that combines compact RTK and network RTK, and it can effectively reduce the time and spatial de-correlation errors. A network RTK user receives multiple correction information generated from reference stations that constitute a network, calculates correction information that is appropriate for one's own position through a proper combination method, and uses the information for the estimation of the position. This combination method is classified depending on the method for modeling the GPS error elements included in correction information, and the user position accuracy is affected by the accuracy of this modeling. Among the GPS error elements included in correction information, tropospheric delay is generally eliminated using a tropospheric model, and a combination method is then applied. In the case of a tropospheric model, the estimation accuracy varies depending on the meteorological condition, and thus eliminating the tropospheric delay of correction information using a tropospheric model is limited to a certain extent. In this study, correction information modeling accuracy performances were compared focusing on the Low-Order Surface Model (LSM), which models the GPS error elements included in correction information using a low-order surface, and a modified LSM method that considers tropospheric delay characteristics depending on altitude. Both of the two methods model GPS error elements in relation to altitude, but the second method reflects the characteristics of actual tropospheric delay depending on altitude. In this study, the final residual errors of user measurements were compared and analyzed using the correction information generated by the various methods mentioned above. For the performance comparison and analysis, various GPS actual measurement data were collected. The results indicated that the modified LSM method that considers actual tropospheric characteristics showed improved performance in terms of user measurement residual error and position domain residual error.

Evaluation of Meteorological Elements Used for Reference Evapotranspiration Calculation of FAO Penman-Monteith Model (FAO Penman-Monteith 모형의 증발산량 산정에 이용되는 기상요소의 평가)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.274-279
    • /
    • 2006
  • The exact estimation of crop evapotranspiration containing reference or potential evapotranspiration is necessary for decision of crop water requirements. This study was carried out for the evaluation and application of various meteorological elements used for the calculation of reference evapotranspiration (RET) by FAO Penman-Monteith (PM) model. Meteorological elements including temperature, net radiation, soil heat flux, albedo, relative humidity, wind speed measured by meteorological instruments are required for RET calculation by FAO PM model. The average of albedo measured for crop growing period was 0.20, ranging from 0.12 to 0.23, and was slightly lower than 0.23. Determinant coefficients by measured albedo and green grass albedo were 0.97, 0.95 and standard errors were 0.74, 0.80 respectively. Usefulness of deductive regression models was admitted. To assess an influence of soil heat flux (G) on FAO PM, RET with G=0 was compared with RETs using G at 5cm soil depth ($G_{5cm}$) and G at surface ($G_{0cm}$). As the results, RET estimated by G=0 was well agreed with RET calculated by measured G. Therefore, estimated net radiation, G=0 and albedo of green grass could be used for RET calculation by FAO PM.

Modeling for Predicting Yield and $\alpha$-Acid Content in Hop (Humulus lupulus L.) from Meteorological Elements II. A Model for Predicting $\alpha$-Acid Content (기상 요소에 따른 호프(Humulus lupulus L.)이 수량 및 $\alpha$-Acd 함량 예측 모형에 관한 연구 II $\alpha$-Acid 함량 예측 모형)

  • 박경열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.4
    • /
    • pp.323-328
    • /
    • 1988
  • The hop alpha-acid content prediction model developed with meteorological elements in Hoeongseong was Y=28.369-0.003X$_1$+1.558X$_2$-1.953X$_3$-0.335X$_4$-0.003X$\sub$5/-0.119X$\sub$6/, with MSEp of 0.004, Rp$^2$ of 0.9987, Rap$_2$ of 0.9949 and Cp of 7.00. The total sunshine hours (X$_1$), the maximum temperature (X$_3$) and the total precipitation (X$\sub$5/) at flowering stage. the maximum temperature at flower bud differentiation stage (X$_4$) and the maximum temperature at cone ripening stage (X$\sub$6/) influenced on hop alpha .acid content as decrement weather elements. The maximum temperature at cone development stage(X$_2$) effected on ${\alpha}$-acid content as increment weather element.

  • PDF