• Title/Summary/Keyword: metastable

Search Result 271, Processing Time 0.033 seconds

Metastable Vortex State of Perpendicular Magnetic Anisotropy Free Layer in Spin Transfer Torque Magnetic Tunneling Junctions

  • You, Chun-Yeol;Kim, Hyungsuk
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.380-385
    • /
    • 2013
  • We find a metastable vortex state of the perpendicular magnetic anisotropy free layer in spin transfer torque magnetic tunneling junctions by using micromagnetic simulations. The metastable vortex state does not exist in a single layer, and it is only found in the trilayer structure with the perpendicular magnetic anisotropy polarizer layer. It is revealed that the physical origin is the non-uniform stray field from the polarizer layer.

Study on Argon Metastable Density in ICP by Using Laser Induced Fluoresce

  • Seo, Byeong-Hun;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.219.2-219.2
    • /
    • 2014
  • Characteristics of Argon metastable density with electron density have been studied by using Laser induced fluorescence (LIF) in ICP. Two different evolutions of measured metastable densities with electron density depending on a measurement position are addressed. The experimental result is explained by using a zero dimensional global model and is due to electron kinetic properties in the positions that can be seen from electron energy probability functions measured by Langmuir probe. The underlying physics on metastable density with electron density and an experimental method of LIF are presented in detail.

  • PDF

The Influence of Radiation Trapping on the Metastable Population Density and Applications to Low-pressure Plasma

  • Lee, Yeong-Gwang;O, Se-Jin;Jeong, Jin-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.245-246
    • /
    • 2011
  • Emission lines ratios were used for diagnostics of and excited level densities in low-temperature plasmas. In this work, an optical emission spectroscopy (OES) was used to determine the electron temperature and metastable level densities in low-pressure inductively coupled plasma. The emission spectroscopy method was based on a simple collisional-radiative model. The selected lines of the Ar(4p to 4s) were influenced by the radiation trapping at relatively high pressures where the plasma become optically thick. To quantify this effect, a pressure dependence factor ${\alpha}$(P) was derived by using corrections for the measured intensities. It was found that the lower metastable level densities were obtained when ${\alpha}$(P) increased with the increasing discharge pressure. The effect of non-Maxwellian electron energy distribution functions (EEDFs) on the metastables was also presented and discussed.

  • PDF

Study on Argon Metastable and 4p State Neutral Atoms in Magnetized ICP and Helicon Plasmas Measured by Laser Induced Fluorescence and Plasma Emission

  • Seo, Byeong-Hun;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.579-579
    • /
    • 2013
  • We study on Argon metastable and 4p state neutral atom density in magnetized ICP Helicon plasmas by Laser Induced Fluorescence and plasma emission. The results show that metastable density is too low at the center of chamber due to significant neutral depletion. Otherwise, 4p state is high at the center of chamber because electron density is very high. Power and pressure dependence of metastable and 4p state neutral atom have been spatially measured in the radial direction of cylindrical chamber.

  • PDF

Influence of Cu and Ni on Ductile-Brittle Transition Behavior of Metastable Austenitic Fe-18Cr-10Mn-N Alloys (준안정 오스테나이트계 Fe-18Cr-10Mn-N 합금의 연성-취성 천이 거동에 미치는 Cu와 Ni의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.385-391
    • /
    • 2013
  • The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of ${\delta}$-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and ${\delta}$-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.

TEM Diffraction Analysis of Metastable Phases in Beta Ti Alloys (베타 티타늄합금의 준 안정상 TEM 회절도형 분석)

  • Choe, Byung Hak;Shim, Jong Heon;Kim, Seung Eon;Hyun, Yong Taek;Park, Chan Hee;Kang, Joo-Hee;Lee, Yong Tai;Kim, Young Ouk
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.403-409
    • /
    • 2015
  • Metastable phase characteristics of beta Ti alloys were investigated to consider the relationship of the microstructure and diffraction pattern in TEM. TEM analysis showed that the microstructure was mottled as a modulated structure, and the diffraction pattern was composed of spot streaks between the main spots of a stable beta phase with a specific lattice relationship. The modulated structure may be induced by short distance slip or atom movement during a very short interval of solution treated and quenched (STQ) materials. The athermal ${\omega}$ phase, which could be precipitated at low temperature aging, is also analysed by the metastable phase. The metastable phases including athermal ${\omega}$ phase had a common characteristic of hardened and brittle behavior because the dislocation slip was restricted by a super lattice effect due to short distance atom movement at the metastable state.

Effects of reversible metastable defect induced by illumination on Cu(In,Ga)Se2 solar cell with CBD-ZnS buffer layer

  • Lee, Woo-Jung;Yu, Hye-Jung;Cho, Dae-Hyung;Wi, Jae-Hyung;Han, Won-Seok;Yoo, Jisu;Yi, Yeonjin;Song, Jung-Hoon;Chung, Yong-Duck
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.431-431
    • /
    • 2016
  • Typical Cu(In,Ga)Se2 (CIGS)-based solar cells have a buffer layer between CIGS absorber layer and transparent ZnO front electrode, which plays an important role in improving the cell performance. Among various buffer materials, chemical bath deposition (CBD)-ZnS is being steadily studied to alternative to conventional CdS and the efficiency of CBD-ZnS/CIGS solar cell shows the comparable values with that of CdS/CIGS solar cell. The intriguing thing is that reversible changes occur after exposure to illumination due to the metastable defect states in completed ZnS/CIGS solar cell, which induces an improvement of solar cell performance. Thus, it implies that the understanding of metastable defects in CBD-ZnS/CIGS solar cell is important issue. In this study, we fabricate the ITO/i-ZnO/CBD-ZnS/CIGS/Mo/SLG solar cells by controlling the NH4OH mole concentration (from 2 M to 3.5 M) of CBD-ZnS buffer layer and observe their conversion efficiency with and without light soaking for 1 hr. From the results, NH4OH mole concentration and light exposure can significantly affect the CBD-ZnS/CIGS solar cell performance. In order to investigate that which layer can contain metastable defect states to influence on solar cell performance, impedance spectroscopy and capacitance profiling technique with exposure to illumination have been applied to CBD-ZnS/CIGS solar cell. These techniques give a very useful information on the density of states within the bandgap of CIGS, free carriers density, and light-induced metastable effects. Here, we present the rearranged charge distribution after exposure to illumination and suggest the origin of the metastable defect states in CBD-ZnS/CIGS solar cell.

  • PDF

Microstructural evolution and mechanical properties of $Al_{71.6}Ge_{28.4}$ eutectic alloy ($Al_{71.6}Ge_{28.4}$ 공정합금의 미세구조 및 기계적 성질의 평가)

  • Park, Jin-Man;Yook, Wan;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.27 no.4
    • /
    • pp.167-172
    • /
    • 2007
  • In the present study, the microstructural evolution and mechanical properties of $Al_{71.6}Ge_{28.4}$ eutectic alloy have been investigated. Stable (fcc ${\alpha}$-Al and diamond cubic ${\beta}$-Ge) and various metastable crystalline (monoclinic, rhombohedral) phases were produced by competitive phase selection during non-equilibrium processing methods i.e. melt spinning and injection casting. The as-injection casted samples containing metastable-equilibrium eutectic (${\alpha}$-Al + monoclinic) structure showed much higher strength than samples with equilibrium eutectic (${\alpha}-Al+{\beta}-Ge$) structure but plasticity disappointingly diminished. In order to endow the enhanced ductility without significant strength drop, the alloys was heat-treated at transition temperature from metastable phase to stable phase. The annealed specimen displayed the phase transformed microstructural evolution and enhanced macroscopic plasticity.

Effects of annealing temperature on strain-induced martensite and mechanical properties of 304 stainless steel (304 스테인리스 강의 가공유기 마르텐사이트와 기계적 거동에 미치는 온도의 영향)

  • Lee, S.H.;Choi, C.Y.;Nam, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.203-206
    • /
    • 2008
  • Transformation of austenite to martensite during cold rolling has been widely used to strengthen metastable austenitic stainless steel grades. Aging treatment of cold worked metastable austenitic stainless steels, including ${\alpha}'$-martensite phase, results in the further increase of strength, when aging is performed in $200^{\circ}C$ to $450^{\circ}C$ temperature range. The purpose of the present study was to evaluate the effect of time and temperature on the stress-strain behavior of cold worked austenitic stainless steels. The amount of ${\alpha}'$-martensite during cold working and aging was examined by ferrite scope and X-ray diffraction (XRD). During aging at $450^{\circ}C$ for 1hr, tensile strength dramatically increased by 150MPa. Deformed metastable austenitic steels containing the "body-centered" ${\alpha}'$-martensite are strengthened by the diffusion of interstitial solute atoms during aging at low temperature.

  • PDF

Spatiotemporal Behavior of the Excited Xe Atom Density in the $1s_5$ Metastable State According to the Hoof-type Electrode Structure in an Alternating-current Plasma Display Pane

  • Kim, Yong-Hee;Hong, Young-June;Choi, Joon-Ho;Cho, Byeong-Seong;Uhm, Han-Sub;Choi, Eun-Ha
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.149-153
    • /
    • 2010
  • To improve the luminescence characteristics of high-efficiency alternating-current plasma display panels (AC-PDPs), we developed a new hoof-type electrode structure, and we studied the spatiotemporal behavior of the density of the excited Xenon atom in the $1s_5$ metastable state via laser absorption spectroscopy. Using this structure, the maximum density of the excited Xenon atom per cell was improved by 2.4 times that when the conventional electrode structure was used.