• Title/Summary/Keyword: metapseudo-label

Search Result 1, Processing Time 0.014 seconds

Named entity recognition using transfer learning and small human- and meta-pseudo-labeled datasets

  • Kyoungman Bae;Joon-Ho Lim
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.59-70
    • /
    • 2024
  • We introduce a high-performance named entity recognition (NER) model for written and spoken language. To overcome challenges related to labeled data scarcity and domain shifts, we use transfer learning to leverage our previously developed KorBERT as the base model. We also adopt a meta-pseudo-label method using a teacher/student framework with labeled and unlabeled data. Our model presents two modifications. First, the student model is updated with an average loss from both human- and pseudo-labeled data. Second, the influence of noisy pseudo-labeled data is mitigated by considering feedback scores and updating the teacher model only when below a threshold (0.0005). We achieve the target NER performance in the spoken language domain and improve that in the written language domain by proposing a straightforward rollback method that reverts to the best model based on scarce human-labeled data. Further improvement is achieved by adjusting the label vector weights in the named entity dictionary.