• Title/Summary/Keyword: metamorphism

Search Result 192, Processing Time 0.023 seconds

Stratigraphy and Metamorphism of Seosan Group (서산층군(瑞山層群)의 층서(層序) 및 변성작용(變成作用))

  • Na, Ki Chang;Kim, Hyung Shik;Lee, Sang Hun
    • Economic and Environmental Geology
    • /
    • v.15 no.1
    • /
    • pp.33-39
    • /
    • 1982
  • The Seosan Group in the Taean peninsular can be divided into Seosan formation and Daesan formation according to its metamorphism and stratigraphy. The Seosan formation is composed of iron bearing quartzite and schist which are strongly metamorphosed and migmatized about 2572 m.y.ago. The Daesan formation is composed mainly of quartzite and crystalline limestone. They were intruded by granite gneiss 2370m.y ago and metamorphosed two or three times before Jurassic Period. The Group is overlain by Taean formation which shows low grade metamorphism. Total three times metamorphic events can be recognized in these areas. First and second metamorphisms are predominent in amphibolite facies, the last metamolphism is mostly greenschist facies.

  • PDF

Polymetamorphism of the Odesan Gneiss Complex in the Northeastern area of the Kyonggi Massif, Korea (경기육괴 북동부지역에 분포하는 오대산편마암복합체의 다변성작용)

  • 권용완;김형식;오창환
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.226-243
    • /
    • 1997
  • The Odesan Gneiss Complex consists of mainly migmatitic gneiss and porphyroblastic gneiss with locally intercated quartzite, amphibolite, marble and leucocratic gneiss. At least two different regional metamorphisms are recognized in the study area. Metamorphic grade of the first metamorphism increases from the K-feldspar-muscovite zone(in which biotite-muscovite-plagioclase-quartz and garnet-biotite-muscovite-K-feldspar-plagioclase-quartz assemblages occur) in the east and southwestern part of the study area to the K-feldspar-garnet zone(in which garnet-biotite-K-feldspar-plagioclase-quartz, biotite-K-feldspar-plagioclase-quartz, garnet-biotite-K-feldspar-plagioclase-sillimanite-spinel-quartz assemblages occur) in the northwestern part. Kyanite is found as inclusions in plagioclase. The second metamorphism is characterised by occurrence of cordierite. The metamorphic grade of 2nd metamorphism decreases radically from the central-western part near Gaeinsan in which cordierite-garnet-sillimanite-biotite-muscovite-quartz, cordierite-garnet-spinel-sillimanite-biotite-muscovite-quartz assemblages representing the garnet-cordierite zone are observed. The garnet-cordierite zone is surrounded by the sillimanite-cordierite zone which shows cordierite-sillimanite-biotite-plagioclase, cordierite-muscovite-biotite-plagioclase and sillimanite-muscovite-biotite-plagioclase assemblages. The peak metamorphic P-T conditions of the first metamorphism calcuted from garnet-biotite-sillimanite-K-feldspar-plagioclase-spinel assemblage are 5.4~7.4 kb and $776-789^{\circ}C$. Real P-T condition of the first metamorphism might be higher than the calcuated P-T condition according to the study based on the phase equilibria. P-T conditions calcuated from the garnet-biotite in plagioclase are 12.5kb and $650^{\circ}C$ which indicate that the P-T path of the first metamorphism had passed a high pressure condition before the peak metamorphic temperature condition. The peak metamorphic P-T conditions of the second metamorphism calcuated from garnet-biotite-cordierite-spinel-quartz assemblage are $680~750^{\circ}C$ at pressures lower than 6 kb. In the Odesan Gneiss Complex, the first metamorphism of medium pressure and high temperature had occurred after the high pressure condition and fast uplift and then the second metamorphism of low pressure condition occurred after sedimentation of the Kuryong Group.

  • PDF

Metamorphic evolution of granitic and porphyroblastic gneisses in the Seungju-Suncheon area, the southwestern part of the Sobacksan Massif (소백산 육괴 서남부인 승주-순천 일대의 화강암질 편마암과 반상변정질 편마암의 변성진화과정)

  • 오창환;전은영;박배영;안건상;이정후
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.121-141
    • /
    • 2000
  • Granitic and pophyroblastic gneisses are widely distributed in the Seungju-Suncheon area, the southwestern part of the Sobacksan Massif. Two groups of metamorphic P-T conditions are recognized from granitic gneiss. $622-760^{\circ}C/6.2~7.4\;kbar$(Group I) are estimated from garnet cores and samples with weak retrograde metamorphism. $606~785^{\circ}C/3.7~5.4\;kbar$(Group II) are estimated from garnet rims which have lower pyrope and higher spessartine contents due to the effect of retrograde metamorphism. The metamorphic P-T conditions estimated from porphyroblastic gneiss are $489~669^{\circ}C$, 2.1~4.8 kbar which are similar to the P-T conditions of Group II in the granitic gneiss. The whole rock-garnet Sm/Nd isotopic ages determined from granitic and porphyroblastic gneisses are, respectively, $1417{\pm}52\;Ma\;and\;1421{\pm}14\;Ma$. These date indicate that intermediate-P/T type metamorphism represented by Group I may have occurred between the intrusion of granite gneiss and the intrusion of porphyroblastic gneiss(between 1890 Ma~2120 Ma) and two gneisses experienced low-P/T type metamorphism after the intrusion of porphyroblastic gneiss at 1417~1421 Ma.

  • PDF

Paleoproterozoic Hot Orogenesis Recorded in the Yeongnam Massif, Korea (영남육괴에 기록된 고원생대 고온조산운동)

  • Lee, Yuyoung;Cho, Moonsup
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.199-214
    • /
    • 2022
  • The Yeongnam Massif is one of representative basement provinces in the Korean Peninsula, which has experienced high-temperature, low-pressure (HTLP) regional metamorphism and partial melting. Here we reviewed recent developments in Paleoproterozoic (1.87-1.84 Ga) hot orogenesis of the Yeongnam Massif, typified by the granulite-facies metamorphism and partial melting recorded in the HTLP rocks. In particular, spatiotemporal linkage between the metamorphic and magmatic activities, including the Sancheong-Hadong anorthositic magma as a heat source, provides a key to understand the widespread HTLP metamorphism and partial melting in the Yeongnam Massif. Crustal anatexis, resulting from the fluid-present melting and muscovite/biotite dehydration melting, has yielded various types of leucosomes and leucogranites. Zircon and monazite petrochronology, using in-situ U(-Th)-Pb data from the secondary ion mass spectrometry, indicates that the HTLP metamorphism and anatexis lasted over a period of ~15 Ma at ca. 1870-1854 Ma. In addition, a fluid influx event at ca. 1840 Ma was locally recognized by the occurrence of incipient charnockite. Taken together, the Yeongnam Massif preserves a prolonged evolutionary record of the HTLP metamorphism, partial melting, and fluid influx diagnostic for a hot orogen. Such an orogen is linked to the Paleoproterozoic orogeny widespread in the North China Craton, and most likely represents the final phase of crustal evolution in the Columbia/Nuna supercontinent.

A study on Talc mineralization of Serpentine (사문석(蛇紋石)의 활석화과정(滑石化過程)에 관(關)한 연구(硏究))

  • Chi, Jeong Mahn;Kim, Kyu Bong
    • Economic and Environmental Geology
    • /
    • v.10 no.2
    • /
    • pp.67-74
    • /
    • 1977
  • Biggest talc deposits of South Korea, localized in Choong-Chung-Nam-do, are known as a products of hydrothermal metamorphism of serpentine. From studying mineral paragenesis and localization, three types of talc mineralization is presumed as follows: 1) Extended talc mineralization from autometamorphism (serpentinization) of ultra-basic igneous rocks, 2) Schistose talc rock as green schist facies of regional metamorphism and 3) Late hydrothermal mineralization and purification of serpentine and pre-existing low grade ores.

  • PDF

Metamorphic Evolution of the central Ogcheon Metamorphic Belt in the Cheongju-Miwon area, Korea (청주-미원지역 중부 옥천변성대의 변성진화과정)

  • 오창환;권용완;김성원
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.106-124
    • /
    • 1999
  • In the Cheongju-Minwon area which occupies the middle part of the Ogcheon Metamorphic Belt, three metamorphic events(M1, M2, M3) had occurred. Intermediate P/T type M2 regional metamorphism formed prevailing mineral assemblages in the study area. Low PIT type M3 contact metamorphism occurred due to the intrusion of granites after M2 metamorphism. M1 metamorphism is recognized by inclusions within garnet. During M2 metamorphism, the metamorphic grade increased from the biotite zone in the southeastern part to the garnet zone in the northwestern part of the study area. This result is similar to the metamorphic evolution of the southwestern part of the Ogcheon Metamorphic Belt. Garnets in the garnet zone are classified into two types; Type A garnet has inclusions whose trail is connected to the foliation in the matrix and Type B garnet has inclusion rich core and inclusion poor rim. Type A garnet formed in the mica rich part with crenulation cleavage whereas Type B garnet formed in the quartz rich part with weak crenulation cleavage. In some outcrops, two types garnets are found together. Compared to the rim of Type A garnet, the rim of Type B garnet is lower in grossular and spessartine contents but higher in almandine and pyrope contents. In some Type B garnets, the inclusion poor part is rimmed by muddy colored or protuberant new overgrowth. In the inclusion poor part and new overgrowth, a rapid increase in grossular and decrease in spessartine is observed. However, the compositional patterns of Type A and B are similar; Ca increases and Mn decreases from core to rim. Two types garnets formed mainly due to the difference of bulk chemistry instead of metamorphic and deformational differences. The metamorphic P-T conditions estimated from Type A garnets are 595-690 OC15.7-8.8 kb, which indicates M2 metamorphism is intermediate P/T type metamorphism. On the other hand, a wide range of P-T conditions is calculated from Type B garnets. The P-T conditions from most Type B garnet rims are 617-690 OC16.2-8.9 kb which also indicates an intermediate P/T type metamorphism. However, at the rim part with flat end or weak overgrowth, grossular content is low and 573-624OC14.7-5.8 kb are estimated. The P-T conditions calculated from plagioclase and biotite inclusions in garnet are 460-500 0C/1.9-3.0 kb. The P-T conditions from rim part with weak overgrowth and inclusions within garnet, indicate that low P/T type M1 regional metamorphism might have occurred before intermediate P/T type M2 regional metamorphism. The P-T conditions estimated from samples which had undergone low PIT type M3 metamorphism strongly, are 547-610 0C/2.1-5.0 kb.

  • PDF

K-Ar Ages on Biotites of the Proterozoic Buncheon and Hongjesa Granitic Rocks in the northeastern Part of the Sobaegsan Massif (선(先)캠브리아기(紀) 분천(汾川) 및 홍제사화강암류(홍제사화강암류)의 흑운모(黑雲母)에 대(對)한 K-Ar 연대측정(年代測定))

  • Hong, Young Kook;Choi, Tae Yun
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.147-151
    • /
    • 1986
  • K-Ar ages on biotites have been determined from the Proterozoic Buncheon and Hongjesa granitic rocks in comparison with the Rb-Sr whole-rock ages to investigate the ages of metamorphic events. The Rb-Sr whole-rock ages determinations on the Buncheon and Hongjesa granitoid rocks were previously reported as 2,100Ma and 1,700Ma, respectively. K-Ar ages on biotites separated from the studied rock have revealed three different age groups such as 1) 1,200~1,300Ma, 2) 600~700Ma and 3) 300~400Ma. The Rb-Sr whole-rock ages for the granitic rocks represent the time of emplacement, whereas the K-Ar ages on biotites generally indicate the time of metamorphism or alteration. The large discordance in the two age systems may not be explained as indicating the cooling period of the granitic batholiths. The K-Ar ages on biotites from the granitoid rocks might not be simply interpreted as the age of the last phase of metamorphism, since the granitic rocks had been undergone multistages of amphibolite facies-metamorphism in the Precambrian period. During the multistages of intermediate grade metamorphism, $^{40}Ar$-loss could be inevitably taken place as the metamorphic temperatures went up above the blocking temperature of biotite ($300{\pm}50^{\circ}C$). The results of the K-Ar dating on biotites from this study are probably minimum ages or hydrothermal alteration ages.

  • PDF

Granulite facies metamorphism of the Punggi area in the Sobeaksan Gneiss Complex -Crustal evolution and environmental geology of the North Sobeagsan Massif, Korea- (풍기지역 소백산편마암복합체의 백립암상 변성작용 -북부 소백산육괴의 지각진화와 환경지질-)

  • 권용완;신의철;오창환;김형식;강지훈
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.183-202
    • /
    • 1999
  • The Sobeaksan Gneiss Complex in the Punggi area is composed of mainly mignatitic gneiss, porphyroblastic gneiss, garnet granitic gneiss and biotitie granitic gneiss. Metamorphic grade increase gradually from the amphibolite facies of northwestern part to the granulite facies of southwestern part in the study area. Representative mineral assemblage in the amphibolite facies is biotite-muscovite-K-feldspar-plagioclase$\pm$garnet$\pm$epidote, needle shape or fibrous sillimanite occur in transitional zone from the amphibolite facies to the granulite facies. In the granulite facies, the garnet-Opx granulite shows garnet-orthopyroxene-biotite-plagioclase, the metabasite shows clinopyroxene-plagioclase$\pm$hornblende$\pm$orthopyroxene$\pm$garnet and the migmatitic gneiss shows garnet-biotite-sillimanite-cordierite$\pm$spinel as representative mineral assemblage. Retrograde metamorphism after the granulite facies metamorphism made corindum and andalusite in the migmatitic gneiss and the thin layer garnet between clinopyroxene and plagioclase in the metabasites. The peak P-T conditions of the migmatitic gneiss and the garnet-Opx granulite are $916^{\circ}C$/6.6 kb and $826^{\circ}C$/6.3 kb, respectively. The P-T condition of biotite and plagioclase inclusion, which indicates the progressive condition of the granulie facies, within garnet is $866^{\circ}C$/7.5 kb and that of rim composition of garnet and biotite is $726^{\circ}C$/4.6 kb, which infer the clockwise P-T path of the granulite facies metamorphism. The temperatures caculated by the rim composition of garnet and biotite in the migmatitic gneiss and garnet granitic gneiss have a wide range of $556-741^{\circ}C$, which indicate that the retrograde metamorphism after the granulite facies metamorphism has effected differently. It is difficult to determine the P-T condition of the biotite granitic gneiss because less occurrence and higher spessartine content of garnet. The P-T condition of the thin layered garnet between clinopytoxene and plagioclase in the metabasite is $635-707^{\circ}C$/4.1-5.3 kb. This texture indicates the isobaric cooling(IBC) condition of the retrogressive metamorphism. As a result, the metamorphic evolution of the Punggi area has undergone the isobaric cooling after the granulite facies metamorphism which has undergone the clockwise P-T path.

  • PDF

Timing of Metamorphism of the Metavoclanics Within the Gyemyeongsan Formation (계명산층 변성화산암의 변성시기)

  • Kim, Myoung-Jung;Park, Kye-Hun;Yi, Keewook;Koh, Sang Mo
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.291-298
    • /
    • 2013
  • We identified well developed overgrowth rims from several zircon grains separated from the Gyemyeongsan metavolcanics of the Okcheon Metamorphic Belt. Such overgrowth rims reveal generally quite low Th/U ratios indicating formation during the metamorphism. We were able to conduct SHRIMP U-Pb spot analyses from the relatively wide overgrowth rims and determined a concordia age of $259.7{\pm}3.3Ma$ (n=8, $2{\sigma}$), which indicates timing of the regional metamorphism occurred in the Gyemyeongsan Formation.

Genesis of Talc Ore Deposits in the Yesan Area of Chungnam, Korea (충남(忠南) 예산지구(禮山地區) 활석광상(滑石鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Woo, Young-Kyun;Choi, Suck-Won;Park, Ki-Hwa
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.363-378
    • /
    • 1991
  • Field and microscopic evidence, XRD,EPMA and chemical data suggest that parent rock of talc ore deposits of Yesan district was originated from ultramafic igneous rock. Parent rock can be divided into serpentinized dunite, serpentinized peridotite, metagabbro, amphibolite and hornblende schist. The ore deposits are highly sheared, and show many evidences of hydrothermal alteration and metamorphism at the greenschist and albite-epidote amphibolite facies. The process of steatitization is variable depending upon the composition, and the degree of alteration and metamorphism of the parent rocks. Steatitization can be divided into two processes with or without serpentinization. The parent rocks with serpentinization are serpentinized dunite, serpentinized peridotite and metagabbro, showing the following alteration process; olivine ${\rightarrow}$ serpentine${\rightarrow}$ talc. The rocks without serpentinization are amphibolite and hornblende schist showing the following sequence; hornblende${\rightarrow}$ chlorite${\rightarrow}$ talc. Formation of talc deposits is summarized as following six stages; I) Intrusion of ultramafic rocks, 2) autometamorphism, 3) metamorphism at greenschist and albite-epidote-amphibolite facies, 4) brittle deformation, 5) hydrothermal alteration, 6) purification of low-grade talc by late dyke intrusion.

  • PDF