• Title/Summary/Keyword: metallurgical technology

Search Result 691, Processing Time 0.03 seconds

A Study on the Thermal Properties of Al-xSi-2Cu-1Mg/ySiC(x:6, 12, 18. $y:0{\sim}10wt.%$) Composite Materials (Al-xSi-2Cu-1Mg/ySiC(x:6, 12, 18. $y:0{\sim}10wt.%$)계 복합재료의 열적성질에 관한 연구)

  • Park, Sang-Joon;Jo, Won-Yong;Kang, Se-Seon;Lim, Yoon-Su;Kwon, Hyuk-Mu;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.342-349
    • /
    • 1993
  • The purpose of this study is to obtain basic information on the particle dispersion, the coefficient of thermal expansion and the thermal conductivity of compocasted Al-xSi-2Cu-1Mg/ySiC(x:6, 12, 18. $y:0{\sim}10wt.%$) composite. With increasing the content of SiC particles, the thermal expension coefficient and the thermal conductivity decrease. The coefficient of thermal expension between 20 and $300^{\circ}C$ is $21.3{\times}10^{-6}/^{\circ}C{\sim}18.0{\times}10^{-6}/^{\circ}C$ for the Al-Si alloys and $18.4{\times}10^{-6}/^{\circ}C{\sim}16.0{\times}10^{-6}/^{\circ}C$ for the composite with 10wt.% SiC. The thermal conductivity at $300^{\circ}C$ is $121{\sim}169W{\cdot}m^{-1}{\cdot}k^{-1}$ for the Al-Si alloys and $114{\sim}159W{\cdot}m^{-1}{\cdot}k^{-1}$ for the composite with 10wt.% SiC.

  • PDF

Recent Progress in Energy Harvesters Based on Flexible Thermoelectric Materials (유연한 열전소재를 이용한 에너지 하베스터 연구개발 동향)

  • Park, Jong Min;Kim, Seoha;Na, Yujin;Park, Kwi-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.119-128
    • /
    • 2022
  • Recent advancement of Internet of Things (IoT) and energy harvesting technology enable realization of flexible thermoelectric energy harvester (f-TEH), with technological prowess for use in biomedical monitoring system integrated applications. To expand a flexible thermoelectric energy harvesting platform, the f-TEH must be required for optimized flexible thermoelectric materials and device structure. In response to these demands related to thermoelectric energy harvesting, many research groups have investigated various f-TEHs applied as a power source for wearable electronics. As a key member of the f-TEH, film-based f-TEHs possess significant applicability in research to realize self-powered wearable electronics, owing to their excellent flexibility, low thermal conductivity, and convenient fabrication process. Thus, based on the rapid growth of thermoelectric film technology, this review aims to overview comprehensively the f-TEH made of various inorganic/organic thermoelectric materials including developed fabrication methods, high thermoelectric performance, and wide-range applications.

Low resistance and low temperature bonding between Silver and Indium

  • Cho, Sung-Il;Yu, Jin;Kim, Young-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.275-278
    • /
    • 2002
  • Conductive adhesives are commonly used for the interconnections of fine pitch, small packages like mobile applications. Since conductive particles connect mechanically with contact pads to give somewhat higher contact resistance, a metallurgical interconnection, which provides both fine pitch and low resistance, was studied using silver ball and indium which can be made at low temperatures. The connection resistance of the In-Ag metallurgical interconnection was lower than that of the Ni/Au-Ag mechanical interconnection and the former showed little dependency on the bonding load in contrast to the latter.

  • PDF

THE EFFECT OF INTERNAL STRESS ON THE SOFT MAGNETIC PROPERTIES OF PERMALLOY THIN FILMS

  • Kim, Hyun-Tae;Kim, Sang-Joo;Han, Suk-Hee;Kim, Hi-Jung;Kang, Il-Koo
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.533-537
    • /
    • 1995
  • The stress in Permalloy thin films fabricated by rf magnetron sputtering on the Si (100) substrates has been investigated with various deposition parameters such as the film thickness, argon pressure, and rf power. The internal stress changes from compressive to tensile with higher input power and argon pressure. The cause of stress variations with these deposition parameters is discussed in terms of thermal and/or intrinsic stress changes. Low coercive force is obtained from Permalloy thin films at a condition of low compressive stress.

  • PDF

Effect of the Degree of Cold Working on the Microstructures for TiNi/6061Al Composites by Permanent mold Casting (금형주조법에 의한 TiNi/6061Al 복합재료의 미세조직에 미치는 냉간가공도의 영향)

  • Park, Seong-Gi;Sin, Sun-Gi;Park, Gwang-Hun;Seong, Jang-Hyeon;Park, Yeong-Cheol;Lee, Gyu-Chang;Lee, Jun-Hui
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1028-1034
    • /
    • 2001
  • The 2.5 vol% TiNi/6061Al composites were fabricated by permanent mold casting. The microstructures and tensile test for the cold rolled composites with maximum 50% reduction ratio were investigated. In the case of TiNi fiber with 2mm interval in preform, the interface bonding of fabricated composites were good, interface diffusion layer of this composites was made by the mutual diffusion. Transverse section of TiNi fiber was decreased with increasing reduction ratio and longitudinal section of TiNi fiber showed multiple wave phenomenon. And the tensile strength of composites at 38% reduction ratio was the most high. In the case of over 38% reduction ratio, the decrease of the tensile strength was due to TiNi fiber rupture by excess working. The fracture mode was appeared brittle fracture with increasing reduction ratio.

  • PDF

Effect of Deformation Temperature on Mechanical Properties of High Manganese Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 가공온도의 영향)

  • Kang, Chang-Yong;Hur, Tae-Young;Kim, Young-Hwa;Koo, Cha-Jin;Han, Hyun-Sung;Lee, Sang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.55-60
    • /
    • 2012
  • This study was carried out to investigate the effect of the deformation temperature in high manganese austenitic stainless steel. ${\alpha}$'-martensite was formed with a specific direction by deformation. The volume fraction of the deformation induced martensite was increased by increasing the degree of deformation and decreasing the deformation temperature. With the increase in the deformation, the hardness and tensile strength were increased, while the elongation was rapidly decreased at the initial stage of the deformation, and then gradually decreased. The hardness and tensile strength were increased and the elongation was decreased with adecrease in the deformation temperature. The hardness and tensile strength were strongly controlled by the volume fraction of martensite, but the elongation was controlled by the transformation behavior of the deformation induced martensite.

Estimation of the impurity segregation in the multi-crystalline silicon ingot grown with UMG (Upgraded Metallurgical Grade) silicon (UMG(Upgraded Metallurgical Grade) 규소 이용한 다결정 잉곳의 불순물 편석 예측)

  • Jeong, Kwang-Pil;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.195-199
    • /
    • 2008
  • Production of the silicon feedstock for the semiconductor industry cannot meet the requirement for the solar cell industry because the production volume is too small and production cost is too high. This situation stimulates the solar cell industry to try the lower grade silicon feedstock like UMG (Upgraded Metallurgical Grade) silicon of 5$\sim$6 N in purity. However, this material contains around 1 ppma of dopant atoms like boron or phosphorous. Calculation of the composition profile of these impurities using segregation coefficient during crystal growth makes us expect the change of the type from p to n : boron rich area in the early solidified part and phosphorous rich area in the later solidified part of the silicon ingot. It was expected that the change of the growth speed during the silicon crystal growth is effective in controlling the amount of the metal impurities but not effective in reducing the amount of dopants.

The Effects of Austempering Heat Treatment on the Processing Window and Mechanical Properties in Cast and Hot-rolled Fe-0.7wt%C-2.3wt%Si-0.3wt%Mn Steel (주조 및 열간 압연된 Fe-0.7wt%C-2.3wt%Si-0.3wt%Mn 강의 프로세싱 윈도우와 기계적 성질에 미치는 오스템퍼링 조건의 영향 비교)

  • Son, Je-Young;Hwang, Dong-Chan;Choi, Jae-Joo;Song, June-Hwan;Kim, Ji-Hun;Kim, Won-Bae;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.30 no.2
    • /
    • pp.60-65
    • /
    • 2010
  • In this study, we investigate the effects of austempering heat treatment on the processing window and mechanical properties in cast and hot-rolled Fe-0.7 C-2.3 Si-0.3 Mn steel. Each specimens were austenitised at $900^{\circ}C$ for 7 min, and austempered at $260^{\circ}C,\;320^{\circ}C$, and $380^{\circ}C$ for the various periods of time from 2 min to 240 min. After heat treatment, the evaluation of stage I and stage II as performed by optical metallography, XRD, hardness test. Both cast and hot rolled specimens had similar processing window. So grain size effect is not important to the austempered high carbon high silicon cast steel. When the austempering temperature was $260^{\circ}C$, the microstructure consisted of the lower ausferrite while the upper ausferrite structure was formed at $380^{\circ}C$. As the austempering temperature increases from 260 to $380^{\circ}C$, the strength and hardness decreased, elongaton and volume fraction of austenite increased. In addition, there was no change of mechanical properties between cast and hot-rolled specimens.

Heat Flow Analysis of Ferritic Stainless Steel Melt during Ti wire feeding (Ti 와이어 피딩에 따른 페라이트계 스테인레스강 제강시 열유동 해석)

  • Kim, Min-Gi;Hwang, Dong-Chan;Choi, Jae-Joo;Shin, Sang-Yoon;Ye, Byung-Joon;Kim, Ji-Hun;Kim, Won-Bae
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.277-283
    • /
    • 2009
  • Recently an increase in production cost of 300 series stainless steel with a sudden increase in nickel cost has caused a decrease in demand for 300 series stainless steel so that 400 series stainless steel has begun to make a mark. Although 400 series stainless steel has good properties, it has a problem of lack of corrosion resistance. There is Ti in 400 series stainless steel alloys to solve the problem above and it has lower density than the others. For that reason, wire feeding process has been applied for adding Ti alloy in 400 series stainless steel. This paper presents consideration of variation on the depth of wire dissolution by conditions of wire feeding which are wire injection speed, the temperature of molten steel, wire diameter and bubble generation rate. The computer program for solution of conducting wire feeding has been developed in Flow3D.