• Title/Summary/Keyword: metallocene polyolefin

Search Result 5, Processing Time 0.016 seconds

Adhesion Properties of Hot-Melt Pressure Sensitive Adhesives Based on Metallocene Polyolefin (메탈로센 폴리올레핀을 이용한 핫멜트 점착제의 제조 및 특성)

  • Shim, Jaeho;Sung, Ickkyeung;Lee, Jungjoon
    • Journal of Adhesion and Interface
    • /
    • v.14 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • In this study, a series of hot-melt pressure sensitive adhesives (HMPSAs) based on metallocene polyolefin (me-PO) were prepared to investigate their possibility of replacing the HMPSAs based on styrenic block copolymers (SBCs). In addition, to optimize the performance of HMPSAs based on me-PO, several tackifiers having different softening point and molecular weight were evaluated. To achieve the HMPSAs which can satisfy the Dahlquist Criterion, hot melts required over 10% of process oil. To obtain the HMPSAs having low viscosity which can be applied by a spraying type applicator, secondary polymer having relatively low crystallinity was required. And, tackifier having high molecular weight attributed to increasing the cohesive strength of me-PO based HMPSAs.

Coordination Polymerization of Carbon Double Bond Catalyzed by Organometallic Compounds (유기금속화합물 촉매에 의한 탄소이중결합의 배위중합)

  • Lee Dong-ho
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.321-330
    • /
    • 2005
  • In 1990's the Korean polyolefin industry boomed up through the development of magnificient polymerization catalysts. To understand the general situation of polymerization catalyst R & D, the various experimental results had been summarized for the investigation of not only the supported Ziegler-Natta catalyst used presently in polyolefin industry but also the metallocene catalysts applied for the preparation of special grade of polyolefin. In addition, it had been shown that the new polymeric materials were prepared by new developed catalyst, and the polymer in-situ nanocomposites could be obtained with the application of catalyst heterogenization procedures.

Polyolefin Block Copolymer Thermoplastic Elastomer (폴리올레핀 블록공중합체 열가소성 탄성체)

  • Koo, Chong Min
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • Polyolefin block copolymer has been taking a great deal of attention due to their great potential in polymer industry since a new metallocene catalytic method for producing polyolefin block copolymer was developed by Dow Chemicals. However, so far, there was no systematic study of olefin block copolymer. In this review, Linear polyolefin block copolymers, containing semicrystalline poly (ethylene) (E) blocks and a rubbery block as a thermoplastic elastomer, were investigated in the viewpoint of microphase separation mode, microstructure, deformation behavior, and molecular architecture.

Polymerization of $\alpha$-Olefin Catalyzed by rac-(EBI) M($NMe_2$)$_2$(M=Zr, Hf)/$AlR_3$/[$Ph_3C$][$B(C_{6}F_{5})$)$_4$] (rac-(EBI) M($NMe_2$)$_2$(M=Zr, Hf)/$AlR_3$/[$Ph_3C$[$B(C_{6}F_{5})$)$_4$ 촉매를 이용한 $\alpha$-올레핀의 중합)

  • Kim, Il;Choi, Chang-Soo;Kim, Ki-Tae
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.646-655
    • /
    • 2000
  • Polymerizations of higher $\alpha$-olefins were carried out in toluene by using highly isospecific catalyst, rac-(EBI)M(NMe$_2$)$_2$ (EBI=1,2-ethylenebis-(1-indenyl); M=Zr(rac-1); M=Hf(rac-2)) In the presence of Al(i-Bu)$_3$/[Ph$_3$C][B($C_{6}F_{5}$)$_4$]. The polymerization of high $\alpha$-olefin showed high activity and similar polymerization behavior. The polymerization activity was affected by both monomer size and lateral size of polymer chain. The conversion of monomer to polymer decreases with the increased lateral size in the order of 1-pentene>1-hexene>1-octene>1-decene. The same dependences of melting behavior and intrinsic viscosity of polyolefin on lateral size were observed according to the results obtained by differential scanning calorimetry and intrinsic viscosity. All poly($\alpha$-olefin)s showed very high isotacticity (triad) and the isotacticity increases in the order of poly(1-pentene)$^1H$ NMR and Raman spectra analysis showed that chain transfer to cocatalyst, which generates saturated methyl groups, Is a main chain termination. The $\beta$-hydride eliminations, which generate unsaturated vinylidene, tri-substituted, and vinylene end group. are found to be minor chain terminations.

  • PDF