• Title/Summary/Keyword: metallic energy-dissipation dampers

Search Result 14, Processing Time 0.019 seconds

Metallic Damper Shape and Cyclic Behavior for the Seismic Capacity Improvement of Building Structures (건축구조물의 내진성능 향상을 위한 강재댐퍼 형상 및 이력 거동)

  • Lee, Hyun-Ho;Kim, Seh-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.123-130
    • /
    • 2010
  • The aim of this paper is a seismic performance evaluation of metallic damper devices which are efficient in workability and installation process. For this V shape and S shape dampers is considered. The strut figures of dampers are V shape and S shape and, the research parameters are strut height and angle of the dampers. ABAQUS program is used for nonlinear finite element analysis. The analysis is performed with the hysteretic curve that has maximum displacement with 50mm and has increased progressive. As a results of evaluating the yield strength, maximum strength and energy dissipation capacity of each device, V and S shape have a good strength capacity and the devices with strut angle $60^{\circ}$ and strut height 140 and 200mm are evaluated stable in seismic behaviors. The response of S shape is more efficient than that of V shape. In the yield strength estimation process, proposed formula can not estimate the yield strength of V and S shape dampers. Even though, the formula can not consider the variation of strut heights and strut angles. Finally the S shape damper is recommended in seismic performance than V shape damper.

A ductile steel damper-brace for low-damage framed structures

  • Javidan, Mohammad Mahdi;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.325-337
    • /
    • 2022
  • In this research, an earthquake-resistant structural system consisting of a pin-connected steel frame and a bracing with metallic fuses is proposed. Contrary to the conventional braced frames, the main structural elements are deemed to remain elastic under earthquakes and the seismic energy is efficiently dissipated by the damper-braces with an amplification mechanism. The superiority of the proposed damping system lies in easy manufacture, high yield capacity and energy dissipation, and an effortless replacement of damaged fuses after earthquake events. Furthermore, the stiffness and the yield capacity are almost decoupled in the proposed damper-brace which makes it highly versatile for performance-based seismic design compared to most other dampers. A special attention is paid to derive the theoretical formulation for nonlinear behavior of the proposed damper-brace, which is verified using analytical results. Next, a direct displacement-based design procedure is provided for the proposed system and an example structure is designed and analyzed thoroughly to check its seismic performance. The results show that the proposed system designed with the provided procedure satisfies the given performance objective and can be used for developing highly efficient low-damage structures.

Displacement and Velocity Dependence of Clamped Shape Metallic Dampers (꺽쇠형 강재 댐퍼의 변위 및 속도 의존성)

  • Lee, Hyun Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.62-70
    • /
    • 2013
  • The purpose of this study is the displacement and velocity dependence evaluation of clamped shape metallic damper, which were evaluated superior in energy dissipation capacity than straight type slit damper. For this purpose, 6 metallic damper specimens are prepared and dependence test are performed. Test variables are displacement dependence and velocity dependence. According to displacement dependence test results, larger target displacement (50mm) shows lower cyclic numbers and cumulated energy dissipated area than lower target displacement (25mm). Also it shows higher strength and early failure than short target displacement. In velocity dependence evaluation, fast target velocity (60mm/sec) shows lower cyclic numbers and cumulated energy dissipated area than slow target velocity (40mm/sec). Therefore the hysteresis dependence of metallic damper were evaluated as close relation to the loading displacement and velocity conditions.

An experimental study on a steel multi-slit damper for seismic retrofit of soft-first story structures

  • Mohammad Mahdi Javidan;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.721-734
    • /
    • 2024
  • In this research, the efficiency of a metallic energy dissipation device for seismic retrofit of an existing structure is evaluated by cyclic loading test. The proposed device, which is called multi-slit damper, is made of weak and strong slit dampers connected in series. Its energy dissipation mechanism consists of two stages: (i) yielding of the weak-slit damper under minor earthquakes; (ii) restraint of further deformations of the weak slit damper and activation of the strong slit damper under major earthquakes using a gap mechanism. A reinforced concrete (RC) frame with characteristics similar to soft-first-story structures is tested under cyclic loading before and after retrofit using the proposed device. The details of the experimental study are described and the test is simulated in an available commercial software to validate the analytical model of the damper. To further verify the applicability of the damper, it is applied to an analysis model of a 4-story structure with soft first story and its seismic performance is evaluated before and after retrofit. The experimental and analysis results show that the multi-slit damper is effective in controlling seismic response of structures.