• 제목/요약/키워드: metallic cavity

검색결과 41건 처리시간 0.022초

Long Range UHF RFID Tag with a Rectangular Metallic Cavity Structure

  • Yeo, Jun-Ho
    • Journal of electromagnetic engineering and science
    • /
    • 제10권3호
    • /
    • pp.121-126
    • /
    • 2010
  • A long range UHF RFID tag with a rectangular metallic cavity structure is proposed for various applications with metallic objects. The proposed tag consists of a rectangular metallic cavity structure and a folded dipole antenna which is located on top of the cavity. The tag is designed for Korean UHF RFID band(910~914 MHz) and the bandwidth, which satisfies the -10 dB input reflection coefficient requirement, is approximately 1.3 %(904~916 MHz). Measurement demonstrates that the proposed tag shows long reading range up to 15 m when it is placed on a metallic plate.

Triple-Mode Characteristics of Cylindrical Cavity Loading a Cylindrical Dielectric Resonator

  • Lee, Seung-Mo;Kim, Cha-Man;Park, Jong-Chul;Kim, In-Ryeol;Oh, Soon-Soo
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.630-636
    • /
    • 2016
  • In this paper, a novel triple-mode cavity structure, designed for compactness and operating at 850 MHz, is analyzed. A cylindrical dielectric resonator is loaded into a metallic cylindrical cavity. Previous study has been focused on the analysis of the cylindrical dielectric resonator, but in this paper, the effect of the cylindrical metallic cavity has been analyzed. Enclosing the dielectric resonator inside the metallic cavity increases the resonant frequency of the dielectric resonator; however, this increases the quality factor and introduces the possibility of installing coupling screws. The principle of generation of triple-mode was investigated by parametric analysis. The generated triple-mode is TE011 mode and two orthogonally generated HEM121 modes. By adjusting the radius of the dielectric resonator, the height of the dielectric resonator, or the radius of the cylindrical metallic cavity, three modes could be coincided. However, the height of the metallic cavity keeps three modes separated. The mode characteristics of the proposed cavity are analyzed using a full-wave electromagnetic (EM) simulation. The proposed triple-mode cavity could be developed to triple-mode filter using a coupling screw, and the commercial application for the miniaturized filter below 1 GHz could be expected.

캐비티 구조를 사용한 장거리 인식용 UHF RFID 금속용 태그 설계에 관한 연구 (A Study of UHF RFID Metallic Tag Design for Long Reading Range Using a Cavity Structure)

  • 이진성;이경환;여준호;정유정
    • 한국통신학회논문지
    • /
    • 제34권12B호
    • /
    • pp.1468-1474
    • /
    • 2009
  • 본 논문에서는 Cavity 구조를 사용하여 장거리에서 인식 가능한 금속태그를 개발하였다. ISO-18000-6에 의하면 리더 시스템의 등방향 방사전력(EIRP)은 36dBm으로 제한되어 있으므로 수동형 태그의 인식거리는 한계가 있다. 태그의 인식거리를 확장하기 위해서는 고이득 안테나의 구조로 태그 안테나를 설계해야 한다. 개발된 태그 안테나는 Cavity 구조를 태그 안테나에 접목시켜 장거리(10m 이상)에서 인식 가능하도록 설계하였다. Caivty 구조를 사용함으로서 지향성을 가진 등방향 방사 패턴을 형성하고 금속에 부착하였을 때에도 안정적으로 동작하게 되었다. 개발된 태그는 $176\;{\times}\;52\;{\times}\;10\;mm^3$$176\;{\times}\;61\;{\times}\;30mm^3$으로 두 가지 종류로 개발되었으며 대형 중장비나 금속 자재 관리 등 대형 금속 환경에서 적용 가능한 태그이다. 두 태그를 금속에 부착하였을 때 약 11m와 15m에서 인식이 되었다.

PCB 파원이 내장된 금속 함체의 공진 특성 해석 (Analysis of Resonant Characteristics for a Metallic Shielding Enclosure with a PCB Source)

  • 조병두;김기채
    • 한국전자파학회논문지
    • /
    • 제23권4호
    • /
    • pp.507-514
    • /
    • 2012
  • 본 논문에서는 함체 내부의 PCB에 있는 트레이스 파원에 의한 함체의 공진 특성 해석법을 제안하고 있다. 함체 내부의 전자계를 계산하기 위해 PCB 트레이스에 형성되는 전류 분포 및 PCB 유전체의 경계면에서 만족하는 경계면 전계 분포에 관한 연립 적분방정식을 유도하였으며, 연립 적분방정식의 해는 Galerkin의 모멘트 법으로 구하고 있다. 그 결과, 함체의 공진 특성은 실험 결과 및 HFSS 툴에 의한 시뮬레이션 결과와도 잘 일치하고 있으며, 함체의 공진 주파수는 PCB 트레이스의 위치에 의해 달라진다는 것을 확인하고 있다. 이론 해석의 타당성을 검증하기 위해 반사 계수의 이론치를 측정치와도 비교하고 있다.

부공동에 손실 유전체를 충진한 함체 케이스의 공진 특성 (Resonance Characteristics of a Metallic Enclosure Having Sub-Cavity with Lossy Dielectric Materials)

  • 임성민;정성우;김기채
    • 한국전자파학회논문지
    • /
    • 제20권9호
    • /
    • pp.936-942
    • /
    • 2009
  • 본 논문에서는 함체 케이스의 내부에 손실 유전체를 충진한 부공동을 설치하고 함체 케이스 내부로 공급된 전력과 반사 계수를 계산하여 함체의 공진 특성을 검토하고 있다. 이론 해석으로는 내부 전자파원의 전류 분포 및 부공동 개구면에서의 전계 분포에 관한 연립 적분방정식을 유도하고 Galerkin의 모멘트법으로 해석하였다. 이론 해석 결과, carbon을 함유한 발포 폴리스티렌을 손실 유전체로 사용하여 부공동의 크기와 carbon 함유량을 조절함으로써 함체 케이스의 공진 특성을 제어하여 함체 내부의 전자파 방사 크기를 저감시킬 수 있음을 보이고 있으며, 공급 전력의 실험치와도 비교하여 이론 해석의 타당성을 확인하고 있다.

A New Resonance Prediction Method of Fabry-Perot Cavity (FPC) Antennas Enclosed with Metallic Side Walls

  • Kim, Dong-Ho;Yeo, Jun-Ho
    • Journal of electromagnetic engineering and science
    • /
    • 제11권3호
    • /
    • pp.220-226
    • /
    • 2011
  • We have proposed a new method to accurately predict the resonance of Fabry-Perot Cavity (FPC) antennas enclosed with conducting side walls. When lateral directions of an FPC antenna are not blocked with metallic walls, the conventional technique is accurate enough to predict the resonance of the FPC antenna. However, when the FPC antenna has side walls, especially for case with only a short distance between the walls, the conventional prediction method yields an inaccurate result, inevitably requiring a tedious, time-consuming tuning process to determine the correct resonant height to provide the maximum antenna gain in a target frequency band using three-dimensional full-wave computer simulations. To solve that problem, we have proposed a new resonance prediction method to provide a more accurate resonant height calculation of FPC antennas by using the well-known resonance behavior of a rectangular resonant cavity. For a more physically insightful explanation of the new prediction formula, we have reinvestigated our proposal using a wave propagation characteristic in a hollow rectangular waveguide, which clearly confirms our approach. By applying the proposed technique to an FPC antenna covered with a partially reflecting superstrate consisting of continuously tapered meander loops, we have proved that our method is very accurate and readily applicable to various types of FPC antennas with lateral walls. Experimental result confirms the validness of our approach.

Al5083 초소성 합금과 Zr-BMG의 Cavity 위치에 따른 마이크로 성형연구 (A Study on the Micro Forming of Al-based Superplastic Alloy and Zr-BMG for the Cavity Position)

  • 손선천;박규열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.258-262
    • /
    • 2008
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). In this study, the micro forming property was studied, using Al5083 superplastic alloy with micro grain, suitable for the micro forming process and Zr-BMG amorphous with pseudo-superplastic phenomena in the supercooled liquid state. Micro forming experiments under stastic load status showed that distortion by slip and spin of the grain system and slip inside the grain was observed in the Al5083 superplastic alloy. In case of Zr-BMG, because there is no grain, the distribution of the forming property was similar to the load distribution between punch and metal.

  • PDF

Dynamics of Nanopore on the Apex of the Pyramid

  • Choi, Seong-Soo;Yamaguchi, Tokuro;Park, Myoung-Jin;Kim, Sung-In;Kim, Kyung-Jin;Kim, Kun-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.187-187
    • /
    • 2012
  • In this report, the plasmonic nanopores of less than 5 nm diameter were fabricated on the apex of the pyramidal cavity array. The metallic pyramidal pit cavity can also utilized as the plasmonic bioreactor, and the fabricated Au or Al metallic nanopore can provide the controllable translocation speed down using the plasmonic optical force. Initially, the SiO2 nanopore on the pyramidal pit cavity were fabricated using conventional microfabrication techniques. Then, the metallic thin film was sputter-deposited, followed by surface modification of the nanometer thick membrane using FESEM, TEM and EPMA. The huge electron intensity of FESEM with ~microsecond scan speed can provide the rapid solid phase surface transformation. However, the moderate electron beam intensity from the normal TEM without high speed scanning can only provide the liquid phase surface modification. After metal deposition, the 100 nm diameter aperture using FIB beam drilling was obtained in order to obtain the uniform nano-aperture. Then, the nanometer size aperture was reduced down to ~50 nm using electron beam surface modification using high speed scanning FESEM. The followed EPMA electron beam exposure without high speed scanning presents the reduction of the nanosize aperture down to 10 nm. During these processes, the widening or the shrinking of the nanometer pore was observed depending upon the electron beam intensity. Finally, using 200 keV TEM, the diameter of the nanopore was successively down from 10 nm down to 1.5 nm.

  • PDF

플라스택 팬 설계, 제조의 CIM 구축을 위한 연구 (A study on CIM construction for the plastic fan design manufacturing)

  • 최양호;이용성
    • 대한기계학회논문집A
    • /
    • 제21권9호
    • /
    • pp.1470-1479
    • /
    • 1997
  • In this study, the plastic fan with high efficiency and low noise was designed and the capacity of the wind and the wind pressure were analysed and verified by CAE. After designing the metallic mold using the metallic mold design data, and the the metallic mold design was reformed by analysing the process of the material stream and injection filling by CAE. Also the metallic mold cutting data were formed using the metallic mold design data. These cutting data was used to produce the fan electrode by a machining center and then this electrode were used to manufacture the metallic mold by cutting the fan cavity by an electrical spark machine. The purpose of this study is to find out the sub-optimal condition on the productivity and improvement in quality of the plastic fan by integrating a series of this process with a computer.

선박 슬러지유 환경에서의 캐비티 붕괴유동에 따른 SS400의 침식양상 (A Erosion Aspect of SS400 by Cavity Collapse Fluctuation in Marine Sludge Oil)

  • 한원희;이진열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권3호
    • /
    • pp.328-336
    • /
    • 2002
  • decrease in efficiency due to cavity fluid fluctuation. The purpose of this study is to examine erosion aspect on the SS400 specimen by cavitation and the effect of impact pressure generated from the demolition of the cavity of ultrasonic vibrator horn in the marine sludge oil environment. The erosion damage of specimen was investigated mainly on weight loss, weight loss rate and maximum erosion rate with variation of the vibration amplitude of $50{\mu}m, 24{\mu}m$ as well as the change of space between transducer horn and specimen. The experimental results showed that as the space between ultrasonic vibrator horn and specimen disk increased, the weight loss and weight loss rate decreased and the values were larger in SFO than in SLO. These findings would help interpret the aspect of cavitation erosion damage in metallic materials of different operating environment and material characteristics.