• Title/Summary/Keyword: metal-plating solution

Search Result 72, Processing Time 0.028 seconds

A Study on the Functional Electroless Ni Plating for Controled Morphology on the CBN Powder (CBN분말상에 석출형상 제어를 위한 무전해 기능성 니켈합금도금에 관한 연구)

  • Chu, H.S.;Kim, D.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.312-324
    • /
    • 2008
  • In this study, the functional property as a super abrasive material was secured for CBN powder by the electroless Ni-P plating on the surface of the particle. The plating solution has been prepared to control the surface morphology by regulating surfactants and process conditions. The effects of processing parameters on the surface morphology of CBN powder was discussed. The results are summarized as follows; A stable plating tendency was achieved from 1 hour after quantitatively dropping reducing agent. It was observed that more than 50% of the weight gain was obtained by Ni-P coating on the surface of CBN super abrasive powder. The morphology of the Ni-P coating layer is consisted of botryoidal and spiky type and it could be controlled by regulating processing parameters. Superior characteristic in terms of surface morphology was found in the nonionic surfactant XL-80N. It was found that XL-80N considerably decreased surface tension of CBN powder and Ni-P alloy surface then enhance wettability as well as plating rate. Metal coated CBN powder as a raw material of resin bond wheel has been developed through this investigation.

Application of a Selective Emitter Structure for Ni/Cu Plating Metallization Crystalline Silicon Solar Cells (Selective Emitter 구조를 적용한 Ni/Cu Plating 전극 결정질 실리콘 태양전지)

  • Kim, Min-Jeong;Lee, Jae-Doo;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.575-579
    • /
    • 2010
  • The technologies of Ni/Cu plating contact is attributed to the reduced series resistance caused by a better contact conductivity of Ni with Si and the subsequent electroplating of Cu on Ni. The ability to pattern narrower grid lines for reduced light shading was combined with the lower resistance of a metal silicide contact and an improved conductivity of the plated deposit. This improves the FF (fill factor) as the series resistance is reduced. This is very much requried in the case of low concentrator solar cells in which the series resistance is one of the important and dominant parameter that affect the cell performance. A Selective emitter structure with highly dopeds regions underneath the metal contacts, is widely known to be one of the most promising high-efficiency solution in solar cell processing In this paper the formation of a selective emitter, and the nickel silicide seed layer at the front side metallization of silicon cells is considered. After generating the nickel seed layer the contacts were thickened by Cu LIP (light induced plating) and by the formation of a plated Ni/Cu two step metallization on front contacts. In fabricating a Ni/Cu plating metallization cell with a selective emitter structure it has been shown that the cell efficiency can be increased by at least 0.2%.

연구논문 초록(1967~1978)

  • 한국표면공학회
    • Journal of the Korean institute of surface engineering
    • /
    • v.16 no.4
    • /
    • pp.199-214
    • /
    • 1983
  • Up to this date, numerous methods of analysis of electroplating solutions are published. Some, however, need lots of works before reaching final results, or require high technique and special instruments, and also some are unaccurate due to unclearnes of end point. Like our undevelope countries, technicians of electoplating shops are most high school gradutes or under, and have not much knowledge on chemistry. Furthermore, those technicians have to control their plating solutions by themselves without having enough analytical laboratory equiIJment. Therefore, in this paper the simplest, besides accurate method is investigated after comparing nu.merous methods published. Among the methods of 'copper determinations from acid and alkaline copper plating baths, EDT A titration method are chosen, due to these methods are the simplest and fastest for the evaluation of metal content, without requiring any special instrument. For acid copper solutions, chelate titrations were accurate enough. Since the end point of titration of chelate method is variable according to the kind of .indicators androther metal's coexsistence as well as solution comIJonent, many difficulties were encountered from cyanide' copper, on the contrary of acid copper bath. PAN, PV, and MX indicators were tried, but it is found that MX is the best. In cyanide solution, due to cyanide is the masking reagent, elimination of this component is essential, and finally found that elimination eN- by precipitation with AgN03 solution was the simplest and the most accurate way among others. This method was very accurate for the new plating solutions even coexistence with organic brightners. However used solutions for long months running have to be predetermined the accurate copper value by thiosulfate method from time to time, before chelate titration by means of AgN03 precipitation. Always some constant deviatioJ;ls will be seen according to the solutions nature. Therefore those deviation values have to be compensated each time.

  • PDF

Preparation and Electroactivities of Carbon Nanotubes-supported Metal Catalyst Electrodes Prepared by a Potential Cycling

  • Kim, Seok;Jung, Yong-Ju;Park, Soo-Jin
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.213-216
    • /
    • 2009
  • The electrochemical deposition of Pt nanoparticles on carbon nanotubes (CNTs) supports and their catalytic activities for methanol electro-oxidation were investigated. Pt catalysts of 4~12 nm average crystalline size were grown on supports by potential cycling methods. Electro-plating of 12 min time by potential cycling method was sufficient to obtain small crystalline size 4.5 nm particles, showing a good electrochemical activity. The catalysts' loading contents were enhanced by increasing the deposition time. The crystalline sizes and morphology of the Pt/support catalysts were evaluated using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The electrochemical behaviors of the Pt/support catalysts were investigated according to their characteristic current-potential curves in a methanol solution. In the result, the electrochemical activity increased with increased plating time, reaching the maximum at 12 min, and then decreased. The enhanced electroactivity for catalysts was correlated to the crystalline size and dispersion state of the catalysts.

PA study on selective emitter structure and Ni/Cu plating metallization for high efficiency crystalline silicon solar cells (결정질 실리콘 태양전지의 고효율 화를 위한 Selective emitter 구조 및 Ni/Cu plating 전극 구조 적용에 관한 연구)

  • Kim, Minjeong;Lee, Jaedoo;Lee, Soohong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.91.2-91.2
    • /
    • 2010
  • The use of plated front contact for metallization of silicon solar cell may alternative technologies as a screen printed and silver paste contact. This technologies should allow the formation of contact with low contact resistivity a high line conductivity and also reduction of shading losses. The better performance of Ni/Cu contacts is attributed to the reduced series resistance due to better contact conductivity of Ni with Si and subsequent electroplating of Cu on Ni. The ability to pattern narrower grid lines for reduced light shading combined with the lower resistance of a metal silicide contact and improved conductivity of plated deposit. This improves the FF as the series resistance is deduced. This is very much required in the case of low concentrator solar cells in which the series resistance is one of the important and dominant parameter that affect the cell performance. A selective emitter structure with highly dopes regions underneath the metal contacts, is widely known to be one of the most promising high-efficiency solution in solar cell processing. This paper using selective emitter structure technique, fabricated Ni/Cu plating metallization cell with a cell efficiency of 17.19%.

  • PDF

Investigation of Ni/Cu Solar Cell Using Selective Emitter and Plating (선택도핑에 도금법으로 Ni/Cu 전극을 형성한 태양전지에 관한 연구)

  • Kwon, Hyuk-Yong;Lee, Jae-Doo;Lee, Hae-Seok;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.1010-1017
    • /
    • 2011
  • The use of plated front contact for metallization of silicon solar cell may alternative technologies as a screen printed and silver paste contact. This technologies should allow the formation of contact with low contact resistivity a high line conductivity and also reduction of shading losses. A selective emitter structure with highly dopes regions underneath the metal contacts, is widely known to be one of the most promising high-efficiency solution in solar cell processing. When fabricated Ni/Cu plating metallization cell with a selective emitter structure, it has been shown that efficiencies of up to 18% have been achieved using this technology.

Development of Nitric Acid Free Desmut Solution for the Aluminum Alloy in Alkaline Etching and Acid Desmut Processes (Aluminum 합금소재의 알칼리에칭 공정으로 발생한 Smut 제거를 위한 무질산 혼합산용액 개발)

  • Choo, Soo-Tae;Choi, Sang Kyo
    • Clean Technology
    • /
    • v.9 no.2
    • /
    • pp.57-61
    • /
    • 2003
  • A novel nitric acid-free desmut solution has been developed to remove smut, which is produced from a NaOH etching, on the surface of aluminum alloy metal in metal surface treatment processes. Comparing with the performance of 5% $HNO_3$ desmut solution, the mixed acid solution containing 2% $H_2O_2$, 0.5% HF, and 10% $H_2SO_4$ shows the same effect of smut removal for aluminum alloy samples of A16061 and A15052. To examine the surface alterations of the aluminum samples, in addition, the surface analysis is carried out with scanning electron microscopy (SEM) and electron probe microanalysis (EPMA).

  • PDF

Life Cycle Environmental Analysis of Valuable Metal (Ag) Recovery Process in Plating Waste Water (폐도금액내 유가금속(Ag) 회수 공정에 대한 전과정 환경성 분석)

  • Da Yeon Kim;Seong You Lee;Yong Woo Hwang;Taek Kwan Kwon
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.12-18
    • /
    • 2023
  • In 2018, the demand for silver (referred to as Ag) in the electrical and electronics sector was 249 million tons. The demand stood at 81 million tons in the solar module production sector. Currently, due to the rapid increase in solar module installation, the demand for silver is increasing drastically in Korea. However, Korea's natural metal resources and reserves are insufficient in comparison to their consumption, and the domestic silver ore self-sufficiency rate was as low as 2.2% as of 2021. This implies that a recycling technology is necessary to recover valuable metal resources contained in the waste plating solution generated in the metal industry. Therefore, this study compared and analyzed, the results of the impact evaluation through life cycle assessment according to an improvement in the process of recovery of valuable metals in the waste plating solution. The process improvement resulted in reducing GWP (Global Warming Potential) and ADP(Abiotic Depletion Potential) by 50% and 67%, respectively. The GWP of electricity and industrial water was reduced by 98% and 93%, respectively, which significantly contributed to the minimization of energy and water consumption. Thus, the improvement in recycling technology has a high potential to reduce chemical and energy use and improve resource productivity in the urban mining industry.

In-Situ Optical Monitoring of Electrochemical Copper Deposition Process for Semiconductor Interconnection Technology

  • Hong, Sang-Jeen;Wang, Li;Seo, Dong-Sun;Yoon, Tae-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.78-84
    • /
    • 2012
  • An in-situ optical monitoring method for real-time process monitoring of electrochemical copper deposition (CED) is presented. Process variables to be controlled in achieving desired process results are numerous in the CED process, and the importance of the chemical bath conditions cannot be overemphasized for a successful process. Conventional monitoring of the chemical solution for CED relies on the pH value of the solution, electrical voltage level for the reduction of metal cations, and gravity measurement by immersing sensors into a plating bath. We propose a nonintrusive optical monitoring technique using three types of optical sensors such as chromatic sensors and UV/VIS spectroscopy sensors as potential candidates as a feasible optical monitoring method. By monitoring the color of the plating solution in the bath, we revealed that optically acquired information is strongly related to the thickness of the deposited copper on the wafers, and that the chromatic information is inversely proportional to the ratio of $Cu$ (111) and {$Cu$ (111)+$Cu$ (200)}, which can used to measure the quality of the chemical solution for electrochemical copper deposition in advanced interconnection technology.

Recovery of Nitric acid and Copper from Plating Waste of Automobile Wheel (자동차 휠 도금박리폐액으로부터 질산 및 구리의 회수)

  • Ha, Yonghwang;Gang, Ryun-Ji;Son, Seong-Ho;Lee, Wonsik;Ahn, Jong-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6015-6022
    • /
    • 2013
  • It has been known that there are large amount of nitric acid and valuable metals, copper in the plating waste solution of automobile wheel. As nitric acid and valuable metals are high price and toxic, they should be recovered for economics and environment. Plating waste was extracted with TBP diluted with kerosene. The concentration of nitric acid in aqueous phase was analyzed by titration method by NaOH solution (0.1~1.0N) and the amount of metals by ICP-MS and ICP-AES. The concentration of copper in plating waste were 76,850 mg/L. The concentration of nitric acid in plating waste was 1.02 M. After three step extraction was performed with 50% TBP, each organic phase was stripped three times with distilled water to obtain 48.1% of nitric acid. Purity of final nitric acid was over 99.9% by ICP analysis. After recovery of nitric acid, copper was extracted with various solvent extractors like PC 88A, D2EPHA, LIX 84 and ISE 106. Among these extractors, 92% of copper was recovered by ISE 106 after 1st extraction and 30% $H_2SO_4$ stripping. Copper ion was reduced with $N_2H_4$ to make metal powders, respectively.