• Title/Summary/Keyword: metal working fluid

Search Result 48, Processing Time 0.032 seconds

A Study on the Antimicrobial Activity of Copper Alloy Metal Fiber on Water Soluble Metal Working Fluids (수용성 절삭유의 부패 특성과 Copper Alloy Metal Fiber의 부패 방지 장치에 관한 연구)

  • Song, Ju-Yeong;Lee, Sang-Ho;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • Copper alloy metal fiber was incorporated into the conventional water-soluble metal working fluids to increase the antimicrobial activity. Fluid treated by copper alloy metal fiber is shown that bacteria is disappeared whereas that untreated metal fiber is increased bacteria as increasing the life time. When the electrochemical potential of Cu/Zn ion is -268mV, radicals with molecular oxygen are easily made. Especially, hydroperoxide radical shows strong toxicity to the strains, leading to the conformational change of plasma membrane. As a result antimicrobial activity of copper alloy metal fiber in metal working fluid is superior to that of copper fiber.

A Study on the Antimicrobial Activity of Copper Alloy Metal Fiber on Water Soluble Metal Working Fluids (수용성 절삭유의 Copper Alloy Metal Fiber에 의한 항균 특성에 관한 연구)

  • Song, Ju-Yeong;Lee, Sang-Ho;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.233-237
    • /
    • 2007
  • This study is focused on the possibility of copper alloy metal fiber for an antimicrobial activity in the water soluble metal working fluids. Electrochemical potential of Cu/Zn ion is -268mV, and easily makes radicals with molecular oxygen. Especially, hydroperoxide radical shows strong toxicity to the strains. Plasma membrane causes conformational change when hydroperoxide radical binds to plasma membrane. Elution of copper ion from copper alloy metal fiber is detected in metal working fluid. As a result antimicrobial activity of copper alloy metal fiber in metal working fluid is superior to that of copper fiber.

Survey of nitroso-compounds level derived from additives in metal-working fluids (유통 수용성 금속가공유 중 니트로 화합물 함유 실태)

  • Yang, Jeong Sun;Choi, Jin Hee;Choi, Seong Bong;Lee, Jong Han
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.268-278
    • /
    • 2007
  • Nitrite which can be derived from water for dilution of metal working fluid can induce nitroso compounds which can be classified as carcinogen, if it co-exists with ethanolamines added for pH control in metal working fluid. The survey of nitrite, nitrate and nitroso-compounds level in 42 metal-working fluids collected from 17 factories was done by ion chromatography and gas chromatography with mass detector. Diluted metal working fluid showed higher level of nitrite and nitrate compared with raw fluid. Nitrite was detected in 11 (52%) samples among 21 diluted solution. Three (14%) samples showed over German recommendation level ($20{\mu}g/mL$).N-nitrosodiethanolamine(NDELA) was detected in 18 samples among 21 diluted solution. Seven (33%) samples showed over German recommendation level ($5{\mu}g/mL$). The concentration of NDELA was correlated with nitrite ion ($R^2=0.453$, n=19).

Drilling Properties of Water-Based Metal Working Fluid Containing Fatty Acid and Polyethylene Glycol (지방산과 폴리에틸렌글리콜의 혼합에 따른 수용성 절삭유제의 절삭특성)

  • Kim, Yeong-Un;Jeong, Geun-U;Yun, Yu-Jeong;Kim, Se-Hun;Gang, Seok-Chun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.161-170
    • /
    • 2001
  • Synthetic water-based metal-cutting fluids are increasingly popular in the metal-working industry because of its environmental friendliness. The propose of this study is to investigate the synergistic effect of combining polyethylene glycol and common fatty acid in formulating a metal-cutting fluid. The tested metals were aluminum, copper and steel, and the test was performed with a modified drilling machine. From the study, it was found that there existed some synergistic effects on the drilling efficiency of the metals to decrease of cutting time, cutting energy, torque as well as the smoothness of surface depended on the formulation ratio of the two fluids.

  • PDF

A Study of Assessment on Occupational Noise Environment for Metal Working Facility (절삭설비의 소음환경평가에 관한 연구)

  • 이내우;허현철;전성균;이진우
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.457-464
    • /
    • 1999
  • To develop managing guidance of occupational noise exposure for metal working facility, we have studied about drafting contour map of noise exposure, methods of noise assessment and actual calculation method of time weighted noise exposure. Therefore we have suggested that contour maps of noisy workplace are very important for controlling metal working fluid facility and two kinds of noise assessment method, so called, personal andstatic exposure are necessary to avoid argument between workers and managing group. Finally we would like recommend that the Korean specification of noise exposure should be modified to protect ONIHL(oocupational noise induced hearing loss).

  • PDF

Reliability Evaluation Technology of Metal Working Fluids Supply Method (절삭유 공급 방식의 신뢰성 평가 기술)

  • 강재훈;송준엽;이승우;박화영;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.206-208
    • /
    • 2002
  • Metalworking fluids (MWFs) are fluids used during machining and grinding to prolong the life of the tool , carry away debris, and protect the surfaces of work pieces. These fluids reduce friction between the cutting tool and the work surface, reduce wear and galling, Protect surface characteristics, reduce surface adhesion or welding and carry away generated heat. Workers can be exposed to MWFs by inhaling aerosols (mists) and by skin contact with the fluid. Skin contact occurs by dipping the hands into the fluid, splashes, or handling workpieces coated with the fluids. The amount of mist generated (and the result ins level of exposure) depends on many factors. To reduce the potential health risks associated with occupational exposures to MWFs, it is required to establish optimum MWFs supply method and condition with minimum Quantity in all over the mechanical machining field including high speed type heavy cult ing process.

  • PDF

Sintered Metal Wicks Development for the High Performance Loop Heat Pipe(LHP) Systems

  • Choi, Jee-Hoon;Sung, Byung-Ho;Yoo, Jung-Hyun;Seo, Min-Whan;Kim, Chul-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2136-2141
    • /
    • 2007
  • The Loop Heat Pipe(LHP) system uses capillary forces so as to pump the working fluid from heat acquisition to heat rejecting systems. The performance of the LHP systems depends mainly upon the operating performance of the wick structure. The capillary pressure increases with decreasing the pore size of the wick structure. By the way, the wick structure's permeability decreases with decreasing the pore size and the porosity. To obtain an ideal wick, the wick structure should possess several characteristics such as the small pore size, high porosity and chemical compatibility with working fluid. Sintered metal wicks have been mainly used as the capillary wick structure mounted in LHP because of the fact that the sintered metal wick has some advantages like convenient selection of wick material, smaller pore size and so on as well as high reliability. In this study, sintered metal wicks were developed to meet required several parameters to design the high performance LHP systems for obtaining even more effective cooling technologies.

  • PDF

Tribological Properties of Aqueous Solutions Composed of Aminated Olive Oil Derivative (수용성 아민화 올리브유 유도체의 트라이볼로지적 특성고찰)

  • Choi, Ung-Su;Lee, Sang-Soon
    • Tribology and Lubricants
    • /
    • v.26 no.5
    • /
    • pp.272-276
    • /
    • 2010
  • Aminated oilve oil derivative as the new organic disperse phases of the water soluble metal working fluid has been synthesized and tribological properties of the aqueous solutions composed of aminated olive oil derivative investigated using Four Ball Wear Tester and Falex EP Tester. The formulated aqueous solutions showed higher antiwear and extreme pressure properties and also lower friction coefficient. On the basis of the the results, water soluble aminated oilve oil derivative showed excellent tribological properties due to the polarizability of oleic acid derivative composed of majority part in oilve oil.

A Study of the Relations between the Bacterial Concentration and the Environmental Factors in the Factories using Water Soluble Metal Working Fluids (수용성 금속가공유 취급사업장에서 세균농도와 환경인자의 관계에 대한 연구)

  • Park, Hae Dong;Park, Hyunhee;Kim, Jung Hyun;Jang, Jae-Kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.4
    • /
    • pp.284-292
    • /
    • 2012
  • Objectives: The objective of this study was to investigate the relations between the bacterial concentration and the environmental factors in the water soluble metal working fluids at factories. Methods: The bacterial concentrations for airborne and fluid samples of 7 factories were quantified during the summer season. And we statistically analysed the relations between the bacterial concentrations and the factors such as temperature, relative humidity, usage quantity, mixing ratio and exchange interval. Results: The geometric mean levels of the airborne bacterial concentrations were 79.1(range : N.D.~686) $CFU/m^{3}$ and 68.1(range: N.D.~919) $CFU/m^{3}$ in the process and outdoor. The airborne bacterial concentrations showed no statistical difference by process, usage quantity, mixing ratio and exchange interval. The airborne bacterial concentrations had negatively weak correlations with air temperature and relative air humidity(p<0.05). The bacterial concentrations and pH showed significantly negative correlations in the fluids(p<0.05). And the airborne bacterial concentrations in factories and those in metal working fluids showed no statistical relationship. Conclusions: In the water soluble metal working fluids using factories, the airborne bacterial concentrations of the process were related to those of the outdoor and environmental factors, rather than the onsite contaminated metal working fluids.

Study on load tracking characteristics of closed Brayton conversion liquid metal cooled space nuclear power system

  • Li Ge;Huaqi Li;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1584-1602
    • /
    • 2024
  • It is vital to output the required electrical power following various task requirements when the space reactor power supply is operating in orbit. The dynamic performance of the closed Brayton cycle thermoelectric conversion system is initially studied and analyzed. Based on this, a load tracking power regulation method is developed for the liquid metal cooled space reactor power system, which takes into account the inlet temperature of the lithium on the hot side of the intermediate heat exchanger, the filling quantity of helium and xenon, and the input amount of the heat pipe radiator module. After comparing several methods, a power regulation method with fast response speed and strong system stability is obtained. Under various changes in power output, the dynamic response characteristics of the ultra-small liquid metal lithium-cooled space reactor concept scheme are analyzed. The transient operation process of 70 % load power shows that core power variation is within 30 % and core coolant temperature can operate at the set safety temperature. The second loop's helium-xenon working fluid has a 65K temperature change range and a 25 % filling quantity. The lithium at the radiator loop outlet changes by less than ±7 K, and the system's main key parameters change as expected, indicating safety. The core system uses less power during 30 % load power transient operation. According to the response characteristics of various system parameters, under low power operation conditions, the lithium working fluid temperature of the radiator circuit and the high-temperature heat pipe operation temperature are limiting conditions for low-power operation, and multiple system parameters must be coordinated to ensure that the radiator system does not condense the lithium working fluid and the heat pipe.