• Title/Summary/Keyword: metal structure

Search Result 3,347, Processing Time 0.032 seconds

Micromachining Thin Film Using Femtosecond Laser Photo Patterning Of Organic Self-Assembled Monolayers. (유기 자기조립 단분자막의 레이저 포토 패터닝을 이용한 박막 미세 형상 가공 기술)

  • Choi Moojin;Chang Wonseok;Kim Jaegu;Cho Sunghak;Whang Kyunghyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.160-166
    • /
    • 2004
  • Self-Assembled Monolayers(SAMs) by alkanethiol adsorption to thin metal film are widely being investigated fer applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecule and bio molecule. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance of Self-Assembled Monolayers in selective etching of thin metal film. In this report, we present the several machining method to form the nanoscale structure by Mask-Less laser patterning using alknanethiolate Self-Assembled Monolayers such as thin metal film etching and heterogeneous SAMs structure formation.

The Formation of Metal Nanoparticles in pH-responsive Block Copolymers and Hydrogels

  • Anastasiadis, S.H.;Vamvakaki, M.;Palioura, D.;Spyros, A.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.85-85
    • /
    • 2006
  • The micellization behavior and the metal-nanoparticle formation in PDEAEMA-b-PHEGMA double hydrophilic block copolymers are investigated. The hydrophobic PDEAEMA block is pH-sensitive: at low pH it can be protonated and it becomes hydrophilic, leading to molecular solubility, whereas at higher pH micelles are formed; the behavior is studied by DLS, NMR and AFM. In these micellar nanoreactors, metal nanorystals nucleate and grow upon reduction with sizes in the range of a few nm's as observed by TEM and XRD. Similarly, metal nanocrystals can be formed within pH-sensitive microgels (${\sim}250nm$ in diameter), synthesized by emulsion copolymerization of DEAEMA, which also exhibit reversible swelling properties in water by adjusting the pH.

  • PDF

Broadband and Polarization Independent Terahertz Metamaterial Filters Using Metal-Dielectric-Metal Complementary Ring Structure

  • Qi, Limei
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.263-268
    • /
    • 2016
  • Broadband metal-dielectric-metal terahertz filters composed of complementary rings are designed and demonstrated. Four samples with different parameters were fabricated. Results measured using THz time-domain spectroscopy system show excellent agreement with simulations. Compared with the broadband filters reported before, the complementary ring structure in our design is insensitive to any polarization at normal incidence due to symmetry of the ring. Furthermore, the influence of structure parameters (such as period, radius, slot width, thickness and incidence angles) on the transmission characteristics has been investigated theoretically. The encouraging results afforded by designing of the filters could find applications in broadband sensors, terahertz communication systems, and other emerging terahertz technologies.

Measurement of metal materials structure by using the manufactured Scanning Confocal Microscopy (초소형 공초점 현미경의 제작과 금속의 구조 측정)

  • Seo, Myeong-Hee;Kim, Jong-Bae;Kwon, Nam-Ic
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.52-57
    • /
    • 2008
  • We demonstrate the operation of an apparatus that we call the laser scanning confocal microscopy. It is valuable tool of the investigations for imaging process. We measured the thin metal structure through the SCM manufacture. Confocal microscopy offers several advantages including shallow depth of field, elimination of out-of-focus glare, and the ability to collect serial optical sections from thick specimens than conventional optical microscope. This research is manufactured of scanning confocal microscopy and after measured of metal materials structure.

Microstructural and Fatigue Characteristecs of AA6005A Weldments for Railroad Vehicles (철도차량용 6005A 알루미늄 합금 압출재의 미세조직 및 용접부 피로 특성)

  • 이정국;서창우;오창록;신동혁;이동헌;김용석
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 2000
  • This research investigates microstructures and fatigue properties of the weldments of 6005A aluminum alloy developed for railroad vehicles. The samples were extruded into a truss structure and welded together using the gas metal arc welding process. The extruded sample showed a wide variation in grain size, possibly due to the frictional heating as well as the inghomogeneous metal flow in the extrusion die. The mechanical properties of the samples were affected by the mirocstructures. The fatigue strength of the welded structure was found to decrease significantly from that of the base metal. It was found that the fatigue characteristics of the welded structure were determined by the microstructure of the parent metal as well as weld defects such as porosities and the liquation cracks.

  • PDF

A Study on the Characteristics of Linear Ultrasonic Motor Using Metal-Ceramics Composite Structure (금속-세라믹 복합구조 선형 초음파 모터의 특성 연구)

  • Lee, Jae-Hyung;Choi, Myeong-Il;Jeong, Dong-Seok;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.80-83
    • /
    • 2002
  • In this study, a single phase driven piezoelectric motor design is presented for linear motion-metal/ ceramics composite structure. Using ANSYS finite element analysis software, mode shape of free motor was obtained to clarify the working principle of this motor. And characteristics of the motor was measured. The motor is composed of a piezoelectric ceramic, a metal ring which has 4 arms, and a guider. The motor with 25.0[mm] diameter was studied by finite element analysis and experimentation too. As a result, the motor was expressed the best speed in resonance frequency. And according as voltage of the motor increase, the speed increased by ratio.

  • PDF

Flexible multimode pressure sensor based on liquid metal

  • Zhou, Xiaoping;Yu, Zihao
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.839-853
    • /
    • 2021
  • In this paper, a novel multimode liquid metal-based pressure sensor is developed. The main body of the sensor is composed of polydimethylsiloxane (PDMS) elastomer. The structure of the sensor looks like a sandwich, in which the upper structure contains a cylindrical cavity, and the bottom structure contains a spiral microchannel, and the middle partition layer separates the upper and the bottom structures. Then, the liquid metal is injected into the top cavity and the bottom microchannel. Based on linear elastic fracture mechanics, the deformation of the microchannel cross-section is theoretically analyzed. The changes of resistance, capacitance, and inductance of the microchannel under pressure are deduced, and the corresponding theoretical models are established. The theoretical values of the pressure sensor are in good agreement with experimental data, implying that the developed theoretical model can explain the performance of the sensor well.

A Study on the Fabrication of Periodic Holes on Metal Electrode for Electrodeionization System Application (전기탈이온시스템 응용을 위한 주기적 홀을 갖는 금속 전극 제작에 관한 연구)

  • Yeo, Jong-Bin;Sun, Sang-Wook;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.227-231
    • /
    • 2013
  • Electrodeionization is a hybrid separation process of electrodialysis and ion exchange to produce high purity water under electric field. This article provides a fabrication result of hole patterned metal electrode for elecrodeionization system. The hole patterns have been fabricated by nanosphere lithography (NSL). The technique utilizes the self-assembled nanospheres as lens-mask patterns and collimated laser beam source. The hole patterns have a periodic array structure. The images of hole pattern on metal electrode prepared were observed by SEM. We believe that the periodic hole patterned metal electrode structure is a useful device applicable for metal mat electrode in electrodeionization system.

Band Electronic Structure Study of Compound $(ET)_2ICl_2$ in Two Structural Modifications

  • Kang Dae Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.428-432
    • /
    • 1994
  • The crystals of ${\beta}-and\;{\beta}'-(ET)_2ICl_2$ have a modified structure of organic superconductor ${\beta}(ET)_2I_3$. These salts possess strictly different physical properties : the ${\beta}$ phase is a metal but the ${\beta}'$ phase is a semiconductor. Our band electronic structure calculations show that the ${\beta}$ phase is somewhat anisotropic 2D metal and the ${\beta}'$ phase with the 1D character in electronic structure is magnetic insulating, in good agreement with experimental indications.

Study on the Characteristics of Hydrogen Storage according to the Structure of Storage Tank using Metal Hydride (수소저장합금을 이용한 수소저장탱크의 구조에 따른 수소저장 특성 연구)

  • Sim, Kyu-Sung;Myung, Kwang-Sik;Kim, Jung-Duk;Kim, Jong-Won
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.1
    • /
    • pp.90-99
    • /
    • 2002
  • In order to utilize hydrogen energy in a large-scale in the future, development of effective hydrogen storage method is essentially required as well as that of efficient hydrogen production method. The hydrogen storage method using metal hydrides has been holding the spotlight as a safer and higher-density hydrogen storage method than conventional hydrogen storage methods such as liquid hydrogen or compressed hydrogen storage method. However when metals react with hydrogen to store hydrogen as metal hydrides, they undergo exothermic reactions, while metal hydrides evolve hydrogen by endothermic reaction. Therefore, hydrogen storage tank should have such structure that it can absorb or release reaction heat rapidly and efficiently. In this study, a review on the improvement of the heat release and absorption structure in the hydrogen storage tank was conducted, and as a result, a new type of hydrogen storage tank with the structure of vertical-type wall was designed and manufactured. Experimental results showed that this new type of tank could be used as an efficient hydrogen storage tank because its structure is simpler and manufacture is easier than cup-type hydrogen storage tank with the structure of packed horizontal cup.