• Title/Summary/Keyword: metal structure

Search Result 3,347, Processing Time 0.027 seconds

Deformation Pattern of the Pyramid-Core Welded Sandwich Sheet Metal in L-Bending (피라미드코어재를 갖는 접합판재의 L-굽힘가공 특성)

  • Kim, J.H.;Chung, W.J.;Cho, Y.J.;Kim, H.G.;Hong, M.J.;Yooe, J.S.;Seong, D.Y.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.316-319
    • /
    • 2008
  • The L-bending of inner-structure bonded sandwich sheet metal is examined by using a bending die attached to the material testing machine. The specimen is composed of top and bottom layers and a middle layer of pyramid-core structure and each layer is bonded by brazing. The variables chosen for experiments were clearance between punch and die, location of bend line on the specimen surface and clamping type of specimen during L-bending. Effects of these variables on deformation of specimen around die-corner radius were investigated. It was shown that the irregular shapes of recess are formed in the inner layer of bended parts and they greatly depend on working conditions.

  • PDF

Analysis of the Damage Patterns and Metal Structure of 3 Phase Mold Transformers to which Interlayer Short-circuits have Occurred (층간 단락된 3상 몰드변압기의 소손 패턴 및 금속 조직 해석)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.86-91
    • /
    • 2010
  • The purpose of this study is to analyze the damage patterns and metal structure of 3 phase mold transformers collected from places where accidents have occurred. Compared to an oil-immersed transformer, a mold transformer has the advantage of requiring a smaller installation area and can be kept clean, while its disadvantages include the fact that abnormal symptoms of an accident are difficult to discover and its repair is impossible. The capacity of the mold transformers collected from places where accidents have occurred was 200kVA with primary voltages being F23,900V, R22,900V, 21,900V, 20,900V, 19,900V, etc., as well as secondary voltages being 380V, 220V, etc. It was found from the analysis on the diffusion of combustion in the damaged mold transformers that fire occurred first inside the U-phase primary winding and that carbonization and heat were diffused to V-phase and W-phase in V-pattern. In addition, from the analysis on the cross-sectional structure of the metal of the melted high voltage winding using a metallurgical microscope, it was found that the boundary surface, voids, and columnar structure were formed when an interlayer short-circuit had occurred Therefore, even though it is not possible to find the cause for the occurrence of an interlayer short-circuit at the inner side of the primary winding, it is thought that, due to the thermal energy generated when the short-circuit occurred, the heat source was diffused to the upper side and outside, causing a secondary accident.

Calculation of the Dipole Moments for Transition Metal Complexes

  • Golding, R. M.;Ahn, Sang-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.2
    • /
    • pp.48-55
    • /
    • 1981
  • A new approach in calculating the dipole moments for transition metal complexes has been proposed and the calculated results are tabulated with the experimental values. The calculated dipole moments are applied to the theoretical prediction or confirmation of the geometric structure for the transition metal complexes.

Damage identification of belt conveyor support structure using periodic and isolated local vibration modes

  • Hornarbakhsh, Amin;Nagayama, Tomonori;Rana, Shohel;Tominaga, Tomonori;Hisazumi, Kazumasa;Kanno, Ryoichi
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.787-806
    • /
    • 2015
  • Due to corrosion, a large number of belt conveyors support structure in industrial plants have deteriorated. Severe corrosion may result in collapse of the structures. Therefore, practical and effective structural assessment techniques are needed. In this paper, damage identification methods based on two specific local vibration modes, named periodic and isolated local vibration modes, are proposed. The identification methods utilize the facts that support structures have many identical members repeated along the belt conveyor and there exist some local modes within a small frequency range where vibrations of these identical members are much larger than those of the other members. When one of these identical members is damaged, this member no longer vibrates in those modes. Instead, the member vibrates alone in an isolated mode with a lower frequency. A damage identification method based on frequencies comparison of these vibration modes and another method based on amplitude comparison of the periodic local vibration mode are explained. These methods do not require the baseline measurement records of undamaged structure. The methods is capable of detecting multiple damages simultaneously. The applicability of the methods is experimentally validated with a laboratory model and a real belt-conveyor support structure.

Revealing Strong Metal Support Interaction during CO Oxidation with Metal Nanoparticle on Reducible Oxide Substrates

  • Park, Dahee;Kim, Sun Mi;Qadir, Kamran;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.264-264
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic ac-tivity for heterogeneous catalysis. In this study, we investigated the support effect and the role of organic capping layers of two-dimensional Pt nanocatalysts on reducible metal oxide supports under the CO oxidation. Several reducible metal oxide supports including CeO2, Nb2O5, and TiO2 thin films were prepared via sol-gel techniques. The structure, chemical state and optical property were characterized using XRD, XPS, TEM, SEM, and UV-VIS spectrometer. We found that the reducible metal oxide supports have a homogeneous thin thickness and crystalline structure after annealing at high temperature showing the different optical band gap energy. Langmuir-Blodgett technique and arc plasma deposition process were employed to ob-tain Pt nanoparticle arrays with capping and without capping layers, respectively on the oxide support to assess the role of the supports and capping layers on the catalytic activity of Pt catalysts under the CO oxidation. The catalytic performance of CO oxidation over Pt supported on metal oxide thin films under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) was tested. The results show that the catalytic activity significantly depends on the metal oxide support and organic capping layers of Pt nanoparticles, revealing the strong metal-support interaction on these nanocatalysts systems.

  • PDF

Welding Distortion Analysis of a Laser Welded Thin Box Structure (얇은 박스형 용접구조물의 용접변형 해석)

  • Kim, Choong-Gi;Kim, Jae-Woong;Kim, Kim-Chul
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.72-77
    • /
    • 2007
  • Prediction and control of the thermal distortion is particularly important for the design and manufacture of welded thin metal structure. In this study, numerical computations are performed to analyze effect of structure section shape and weld line location on distortion. In addition, this study aims to develop a thermal elasto-plastic simulation using finite element method to predict distortion, with particular emphasis on bending deformation generated in outline welding of a thin box structure. From the numerical analysis, it was revealed that the section shape and weld line location play an important role on the welding distortion. Among 3 types of section shape design proposed in this study, the least deformation remained in the two path welded structure.

Factors Affecting the Magnitude of the Metal-Insulator Transition Temperature in AMo4O6 (A=K, Sn)

  • Jung, Dong-Woon;Choi, Kwang-Sik;Kim, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.959-964
    • /
    • 2004
  • A low-dimensional metal frequently exhibits a metal-insulator transition through a charge-density-wave (CDW) or a spin-density-wave (SDW) which accompany it's structural changes. The transition temperature is thought to be determined by the amount of energy produced during the transition process and the softness of the original structure. $AMo_4O_6$ (A=K, Sn) are known to be quasi-one dimensional metals which exhibit metalinsulator transitions. The difference of the transition temperatures between $KMo_4O_6$ and $SnMo_4O_6$ (A=K, Sn) is examined by investigating their electronic and structural properties. Fermi surface nesting area and the lattice softness are the governing factors to determine the metal-insulator transition temperature in $AMo_4O_6$ compounds.

Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure (피라미드 구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 특성평가)

  • 정창균;윤석준;성대용;양동열;안동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.483-486
    • /
    • 2004
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

  • PDF

Characterization of Crystal Structure for Nanosized Noble Metal Particles Fabricated by ERC(Evaporation and Rapid Condensation) Method (증기급속응축법 제조 귀금속 나노분말의 결정학적 특성 연구)

  • Yu, Yeon-Tae
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.285-291
    • /
    • 2003
  • The nanosized silver and gold particles are prepared by ERC method in which metal vapors with high temperature is rapidly quenched by coolants such as liquid nitrogen or liquid argon. In order to monitor the crystal structural changes on the internal and the surface of the nanosized noble metal particles, lattice parameter, internal strain and Debye-Waller factor are investigated, and the calculation of X-ray diffraction scattering intensity is performed. The lattice parameters of silver and gold particles agree with those of bulk materials, and crystal internal strain of the metal particles is not changed by rapid cooling. The Debye-Waller factor of gold particles is increased with decreasing particle size because of the surface softening phenomenon of nanosized particles, but the crystal structural change on the surface of the particles is not detected from the comparison the calculated X-ray diffraction profile with the experimental profile on gold particles with the particle size of 4 nm.

Design of Electronic Ballast for 35[W] Ceramic Metal Halide Lamp by DBI Structure (DBI 구조를 이용한 35[W] 세라믹 메탈 할라이드 램프용 전자식 안정기의 설계)

  • Park, Chong-Yun;Choe, Wang-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.1-7
    • /
    • 2010
  • Ceramic metal halide lamps have been widely used due to long lifetime, high luminous efficiency and good colour rendering. 35[W] ceramic metal halide lamps has very different characteristics between ignition state and steady state. The developed electronic ballast is satisfied to both ignition state and steady state characteristics by using a micro-controller. The proposed electronic ballast is consists of EMI filter, Full-wave rectifier, Active PFC, DBI(Dual Buck Inverter), Igniter and control circuit. It enables to supply both low-frequency rectangular wave voltage and current to the lamp by using DBI(Dual Bcuk Inverter) structure.