• Title/Summary/Keyword: metal spray

Search Result 267, Processing Time 0.028 seconds

Experimental and Numerical Investigation on DME Spray Characteristics as a Function of Injection Timing in a High Pressure Diesel Injector (고압 분사 인젝터의 분사 시기에 따른 DME 분무특성에 관한 실험 및 해석적 연구)

  • Kim, Hyung-Jun;Park, Su-Han;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.3
    • /
    • pp.109-116
    • /
    • 2009
  • The purpose of this study is the experimental and numerical investigation on the DME spray characteristics in the combustion chamber according to the injection timing in a common-rail injection system. The visualization system consisted of the high speed camera with metal halide lamp was used for analyzing the spray characteristics such as spray development processes and the spray tip penetration in the free and in-cylinder spray under various ambient pressure. In order to observe the spray characteristics as a function of injection timing, the piston head shape of re-entrant type was created and the fuel injected into the chamber according to various distance between nozzle tip and piston wall in consideration of injection timing. Also, the spray and evaporation characteristics in the cylinder was calculated by using KlVA-3V code for simulating spray development process and spray tip penetration under real engine conditions. It was revealed that the high ambient pressure of 3 MPa was led to delay the spray development and evaporation of DME spray. In addition, injected sprays after BTDC 20 degrees entered the bowl region and the spray at the BTDC 30 degrees was divided into two regions. In the calculated results, the liquefied spray tip penetration and fuel evaporation were shorter and more increased as the injection timing was retarded, respectively.

  • PDF

Production of Ultra-fine Metal Powder with Gas Atomization Processes

  • Wang, M. R.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.59-68
    • /
    • 2006
  • Experimental results of the metal powder production with internal mixing, internal impinging and the atomizer coupled with substrate design are presented in this paper. In a test with internal mixing atomizer, mean powder size was decreased from $37{\mu}m\;to\;23{\mu}m$ for Pb65Sn35 alloy as the gas-to-melt mass ratio was increased from 0.04 to 0.17. The particle size further reduces to $16.01{\mu}m$ as the orifice area is increased to $24mm^2$. The micrograph of the metal powder indicates that very fine and spherical metal powder has been produced by this process. In a test program using the internal impinging atomizers, the mean particle size of the metal powder was decreased from $22{\mu}m\;to\;12{\mu}m$ as the gas-to-melt-mass ratio increased from 0.05 to 0.22. The test results of an atomizer coupled with a substrate indicates that the deposition rate of the molten spray on the substrate is controlled by the diameter of the substrate, the height of the substrate ring and the distance of the substrate from the outlet of the atomizer. This in rum determines the powder production rate of the spraying processes. Experimental results indicate that the deposition rate of the spray forming material decreases as the distance between the substrate and the atomizer increases. For example, the deposition rate decreases from 48% to 19% as the substrate is placed at a distance from 20cm to 40cm. On the other hand, the metal powder production rate and its particle size increases as the subsrate is placed far away from the atomizer. The production of metal powder with mean particle size as low as $3.13{\mu}m$ has been achieved, a level which is not achievable by the conventional gas atomization processes.

  • PDF

Microstructure and Thermal Behaviors of Droplets During the Formation of Particle Reinforced Metal Matrix Composites by Spray Casting Process (분사주조에 의한 입자강화 금속기지 복합재료의 제조시 액적의 열적거동과 미세조직에 대한 고찰)

  • Kim, Myung-Ho;Bae, Cha-Hurn;Jeong, Hae-Young;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.12 no.4
    • /
    • pp.326-334
    • /
    • 1992
  • Particle-reinforced metal matrix composites via the Osprey spray casting process were fabricated by injecting second phase particles of $Al_2O_3$(<$40{\mu}m$) and W($6{\mu}m$) into the spray of Cu droplets, and the thermal behaviors of the composite droplets during flight were considered theoretically on the basis of mixing modes between the Cu droplets and the reinforced particulates injected. It was found that the W-injected spray is comprised of particle-embedded droplets, and the $Al_2O_3-injected$ spray comprises particle-attached droplets. From the predicted results of the thermal behaviors of the composite droplets and preforms produced, it is concluded that the thermal behaviors of the composite droplets during flight, and during the subsequent deposition are strongly influenced by its mixing modes between the reinforced particulates and Cu droplets during flight.

  • PDF

An experimental study on the application of Cathodic Protection method applying Zn-Al metal spray on the RC structure (Zn-Al 금속용사 전기방식 공법의 콘크리트 구조물 적용성에 관한 실험적 연구)

  • Han, Man-Hae;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.429-432
    • /
    • 2008
  • Cathodic Protection Method was introduced as a corrosion protection method of metals under the ground or sea. Since 1970, it was applied to corrosion protection method of reinforced concrete structures. After 1990, this method has been used around the world, and its usability was proved. But this method has some problems on the aspect of construction and economy. In order to solve these problems, Cathodic Protection Method by using high durable metal spray was developed. First, the specimen was covered with anodic materials (Zn, Al) by using metal spray. And a performance of corrosion protection was confirmed by measuring corrosion current of specimen. Through the result of experiment, it is possible to know that Cathodic Protection Method by using high metal spray is good to protect to corrosion on reinforced concrete structures.

  • PDF

Fabrication, Microstructure and Adhesive Properties of BCuP-5 Filler Metal/Ag Plate Composite by using Plasma Spray Process (Plasma spray 공정을 이용한 BCuP-5 filler 금속/Ag 기판 복합 소재의 제조, 미세조직 및 접합 특성)

  • Youn, Seong-June;Kim, Young-Kyun;Park, Jae-Sung;Park, Joo-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.333-338
    • /
    • 2020
  • In this study, we fabricate a thin- and dense-BCuP-5 coating layer, one of the switching device multilayers, through a plasma spray process. In addition, the microstructure and macroscopic properties of the coating layer, such as hardness and bond strength, are investigated. Both the initial powder feedstock and plasma-sprayed BCuP-5 coating layer show the main Cu phase, Cu-Ag-Cu3P ternary phases, and Ag phase. This means that microstructural degradation does not occur during plasma spraying. The Vickers hardness of the coating layer was measured as 117.0 HV, indicating that the fine distribution of the three phases enables the excellent mechanical properties of the plasma-sprayed BCuP-5 coating layer. The pull-off strength of the plasma-sprayed BCuP-5 coating layer is measured as 16.5 kg/㎠. Based on the above findings, the applicability of plasma spray for the fabrication process of low-cost multi-layered electronic contact materials is discussed and suggested.

Surface and Optical Characteristics of Cobalt Dopped-titanium Oxide Film Fabricated by Water Spray Pyrolysis Technique (습식 분무 열분해 방법으로 제조한 코발트 도핑된 티타늄 산화막의 표면 및 광학적 특성)

  • Song Ho-Jun;Park Yeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Titanium dioxide films $(TiO_2)$ doped cobalt transition metal were prepared on titanium metal by water spray pyrolysis technique. Micro-morphology, crystalline structure, chemical composition and binding state of sample groups were evaluated using field emission scanning microscope(FE-SEM), X-ray diffractometer(XRD), Raman spectrometer, X-ray photoelectron spectrometer(XPS). $TiO_2$ films of rutile structure were predominately formed on all sample groups and $Ti_2O_3$ oxide was coexisted on the surface of cobalt doped-sample groups. The optical absorption peaks measured by using UV-VIS-NIR spectrophotometer were observed at specific wavelength region in sample groups doped cobalt ion. This result could be analyzed by introducing crystal field theory.

Effects of Powder Mixing on the Mechanical Properties of Thermally Sprayed WC-Co-Cr Coating Layers (WC-Co-Cr 용사코팅시 분말의 혼합이 코팅층의 기계적 특성에 미치는 영향)

  • Lee, Chang Woo;Han, Jun Hyun;Shin, Myung Chul;Kwun, S.I.
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.290-296
    • /
    • 2009
  • We report on the effects of mixing of powders with various particle sizes on fracture toughness and wear resistance of thermally sprayed WC-10Co-4Cr coating layers fabricated by HVOF (high-velocity oxygen fuel) process. The size and the mixing ratio of powders were changed in order to get high fracture toughness and wear resistance. The mixing of small amount of coarse powders with fine powders resulted in the highest fracture toughness and wear resistance due to the lowest porosity in coating layers.

An Experimental Study on the Effect of Concrete Surface Treatment Methods on the Bond Strength of Metal Spray Coating (콘크리트 표면처리 방법이 콘크리트 표면 금속용사 피막의 부착강도에 미치는 영향에 관한 실험적 연구)

  • Park, Jin-Ho;Kim, Sang-Yeol;Lee, Han-Seung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.147-154
    • /
    • 2020
  • The exterior finishing of reinforced concrete buildings is one of the important factors to prevent durability and prevent natural environment or disaster such as temperature, snow, wind, rain from the outside as well as external design of buildings. Finishing methods can be divided into wet and dry methods. The wet method using paint is relatively easy to construct, but it requires repair and reinforcement every 1 to 5 years and requires a lot of LCC for maintenance. Finishing method using panel has good durability, but it is difficult to install and expensive. Therefore, in this paper, we evaluate the bond strength for the application of the metal spray method in order to overcome the problems of existing methods. Experimental results show that the sandblast + surface roughness agent(S-R(Y)) has a roughness of 41.16 ㎛ and the bond strength is about 3.19 MPa, which is the highest bond strength. In addition, the grinding + surface roughness agent(G-R(Y)) application showed roughness of about 36.59 ㎛ and secured the bond strength performance of 2.94 MPa.

Deposition of BZO nano-sized dots on the substrate surface for the enhanced magnetic properties of superconducting films

  • Chung, Kook-Chae;Yoo, Jai-Moo;Kim, Young-Kuk;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.12-15
    • /
    • 2008
  • Nano-sized dots have been formed on the buffered metal substrates using the novel approach of the electro-spray deposition, to modulate the substrate surface and induce the columnar defects in REBCO films grown on it. The $BaZrO_3$ precursor solution was synthesized and electro-sprayed out onto the negatively charged substrate surface. Using the electrostatic force, nano-sized dots can be grown and uniformly distributed on the buffered metal substrate. The height of BZO nanodots was observed above the 200nm, which are beneficial to induce the columnar defects onto the BZO as a seed. The density of BZO nanodots was also investigated and ${\sim}7.8/{\mu}m^2$ was obtained. As the deposition distance of electro-spray was shortened there was ${\sim}8times$ increase of density of nanodots. The optimization of process variables in electro-spray deposition are discussed in respect to the superconducting REBCO films processed by the Metal-Organic Deposition with the effective flux pinning properties.

A Study on the Contact Power by Coating Material of Spray in AT Feeding Method (AT급전방식에서 코팅재에 의한 접촉전력에 대한 연구)

  • Kim, Min-Seok;Kim, Min-Kyu;Park, Yong-Gul;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.85-92
    • /
    • 2011
  • Main characteristic in railroad is the guided movement of the wheel by the track through a metal-to-metal contact, conferring to the rail vehicle a single degree of freedom. There are defects such as head check, shelling, corrugation, squats etc in surface of the rail by interface between the wheel and rail. These defects bring about reducing the life-cycle of rails and track components and increasing noises. In case of bad conditions, it is possible to happen to full-scale accident such as derailment. Recently, the track capacity has been increased for increasing speed and operation efficiency. So, maintenance and indirect cost have been increased. Currently, a coating method of rail construction is proposed by using the ceramics in Korea. Rails are used as the earth in electrical railroad systems. Currently traction return current is flowed through wheels of trains. In case of rails coated, problems are caused in the contact power between wheel and coating material of spray. In this paper, electric model is presented in the AT feeding method. In case of rails coated, electric model is presented. Also, standard resistance of the ceramic is demonstrated by contact power between wheel and coating material of spray.