• Title/Summary/Keyword: metal sheets

Search Result 344, Processing Time 0.026 seconds

Impact Energy Absorbing Capability of Metal/Polymer Hybrid Sheets (금속/폴리머 접합강의 충격 특성에 대한 실험적 연구)

  • Kong, Kyungil;Kwon, O Bum;Park, Hyung Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.137-142
    • /
    • 2017
  • Recently, the reduction of vehicle weight has been increasingly studied, in order to enhance the fuel efficiency of passenger cars. In particular, the seat frame is being studied actively, owing to considerations of driver safety from external impact damage. Therefore, this study focuses on high strength steel sheet (SPFC980)/polymer heterojunction hybrid materials, and their performance in regards to impact energy absorption. The ratio of impact energy absorption was observed to be relatively higher in the SPFC980/polymer hybrid materials under the impact load. This was found by calculating the equivalent flexural rigidity, which is the bending effect, according to the Castigliano theorem. An efficient wire-web structure was investigated through the simulation of different wire-web designs such as triangular, rectangular, octagonal, and hexagonal structures. The hexagonal wire-web structure was shown to have the least impact damage, according to the simulations. This study can be utilized for seat frame design for passengers' safety, owing to efficient impact absorption.

Investigation of a Novel Rubber-Forming Process Inducing Uniform Surface Pressure for the Fabrication of a Thin Bent Plate with Corrugated Structure (균일압력 유도에 의한 꺾임 구조를 가진 미세주름 박판구조물 성형을 위한 고무성형 공정연구)

  • Kim, Min-Hoon;Park, Sang-Hu;Jeong, Ho-Seung;Cho, Jong-Rae;Ha, Man-Yeung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.933-940
    • /
    • 2011
  • Thin sheets with a corrugated structure are generally used for the fabrication of heat exchangers for electronics, airplanes, and vehicles. However, it is difficult to fabricate corrugated structures, especially those with a bent angle, using the conventional stamping process because of its intrinsic formation mechanism. We propose a novel rubber-forming process for the effective pressing of the both tilted sides of a plate under the same pressure to form exact corrugated shapes. We use finite element analysis and experiments to study the rubber-forming process parameters, and we evaluate the maximum allowable bent angle for high-quality formation. We show that the proposed method is effective for the fabrication of bent plates with low cost.

Study on Safety Design of Vertical-Type Heat Recovery Steam Generator Based on Large-Scale Analysis (대규모해석을 활용한 수직형 배열회수 증기발생기의 안전설계에 관한 연구)

  • Ryu, Tae-Young;Yang, Sang-Mo;Jang, Hyun-Min;Choi, Jae-Boong;Myung, Ki-Chul;Lee, Dong-Yun;Choi, Shin-Beom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1535-1542
    • /
    • 2012
  • A Heat Recovery Steam Generator(HRSG) is the main component of a Combined Cycle Power Plant(CCPP). It is a very large structure that is made from relatively thin metal sheets. Therefore, the structural integrity of an HRSG is very important to ensure safe operation during plant lifetime. In particular, thermal deformation and thermal fatigue have been revealed as the main causes of the mechanical degradation of an HRSG. In order to prevent unexpected damage, safety evaluation based on a large-scale analysis is necessary. Therefore, this study aims to improve the safety of HRSG by using Finite Element Analysis(FEA) results derived from large-scale analysis. Furthermore, the modified design is verified by comparing it with the original one. This result will be used as basic data for improving the safety of a vertical-type HRSG.

Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Bauschinger Effect (단순전단 시험법 구축 및 바우싱거효과를 고려한 경화거동 예측)

  • Kim, Dongwook;Bang, Sungsik;Kim, Minsoo;Lee, Hyungyil;Kim, Naksoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1239-1249
    • /
    • 2013
  • In this study we establish a process to predict hardening behavior considering the Bauschinger effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Bauschinger effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with FEA. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.

Optimization of Single Point Incremental Forming of Al5052-O Sheet (Al5052-O 판재의 최적 점진성형 연구)

  • Kim, Chan Il;Xiao, Xiao;Do, Van Cuong;Kim, Young Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.181-186
    • /
    • 2017
  • Single point incremental forming (SPIF) is a sheet-forming technique. It is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. The Critical parameters in the forming process include tool diameter, step depth, feed rate, spindle speed, etc. In this study, these parameters and the die shape corresponding to the Varying Wall Angle Conical Frustum(VWACF) model were used for forming 0.8mm in thick Al5052-O sheets. The Taguchi method of Experiments of Design (DOE) and Grey relational optimization were used to determine the optimum parameters in SPIF. A response study was performed on formability, spring back, and thickness reduction. The research shows that the optimum combination of these parameters that yield best performance of SPIF is as follows: tool diameter, 6mm; spin speed, 60rpm; step depth, 0.3mm; and feed rate, 500mm/min.

Observation of Corrosion Behavior with Aluminum 5052 Alloy by Modulating Anodization Time (양극산화 공정시간에 따른 알루미늄 5052 합금의 산화피막 성장 및 내식성 관찰)

  • Ji, HyeJeong;Choi, Dongjin;Jeong, Chanyoung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.67-67
    • /
    • 2018
  • The 5xxx series aluminum alloys are recently used in not only marine system but also automotive area because of a low density material, good mechanical properties and better resistance to corrosion. However, Aluminum alloys are less resistant than the purest aluminum such as 1xxx aluminum alloy. Electrochemical anodization technique has attracted in the area of surface treatment because of a simple procedure, a low-cost efficiency than other techniques such as lithography and a large volume of productivity, and so on. Here, The relationship between the corrosion behavior and the thickness of aluminum anodic oxide have been studied. Prior to anodization, The 5052 aluminum sheets ($30{\times}20{\times}1mm$) were degreased by ultra-sonication in acetone and ethanol for 10 minutes and eletropolished in a mixture of perchloric acid and ethanol (1:4, volume ratio) under an applied potential of 20V for 60 seconds to obtain a regular surface. During anodization process, Aluminum alloy was used as a working electrode and a platinum was used as a counter electrode. The two electrodes were separated at a distance of 5cm. The applied voltage of anodization is conducted at 40V in a 0.3M oxalic acid solution at $0^{\circ}C$ with appropriate magnetic stirring. The surface morphology and the thickness of AAO films was observed with a Scanning Electron Microscopy (SEM). The corrosion behavior of all samples was evaluated by an open-circuit potential and potentio-dynamic polarization test in 3.5wt% NaCl solution. Thus, The corrosion resistance of 5052 aluminum alloy is improved by the formation of an anodized oxide film as function of increase anodization time which artificially develops on the metal surface. The detailed electrochemical behavior of aluminum 5052 alloy will be discussed in view of the surface structures modified by anodization conditions such as applied voltages, concentration of electrolyte, and temperature of electrolyte.

  • PDF

Development of Hybrid Metals Coated Carbon Fibers for High-Efficient Electromagnetic Interference Shielding (고효율 전자파 차폐를 위한 이종금속 코팅 탄소섬유 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Lee, Joong Hee
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.191-197
    • /
    • 2020
  • In this study, a hybrid metals such as copper (Cu) and nickel (Ni) coated carbon fibers (Ni-Cu/CFs) was prepared by wet laid method to develop a randomly oriented sheet material for high-efficiency electromagnetic interference shielding with the enhanced durability. The prepared sheet materials show a high electromagnetic interference shielding efficiency of 69.4 to 93.0 dB. In addition, the hybrid metals coated Ni-Cu/CFs sheets showed very high durability with harsh chemical/thermal environments due to the effective corrosive and mechanical resistances of Ni surface. In this context, the Ni-Cu/CF sheet possesses longer service life than the Cu/CF sheet, that is, 1.7 times longer.

Dissimilar Friction Stir Welding Characteristics of Mg Alloys(AZ31 and AZ61) (AZ31와 AZ61 마그네슘 합금의 이종 마찰교반용접 특성)

  • Park, Kyoung Do;Lee, Hae Jin;Lee, Dai Yeol;Kang, Dae Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.99-104
    • /
    • 2017
  • Friction stir welding is a solid-state joining process and is useful for joining dissimilar metal sheets. In this study, the experimental conditions of the friction stir welding were determined by the two-way factorial design to evaluate the characteristics of the dissimilar friction stir welding of AZ31 and AZ61 magnesium alloys. The levels of rotation speed and welding speed, which are welding variables, were 1000, 2000, 3000 rpm and 100, 200, 300 mm/min, respectively. From the results, the greater the rotation speed and the lower the welding speed of the tool were, the greater the tensile strength of the welded part was. The contribution of the welding speed of the tool is larger than that of the rotation speed of the tool. In addition, the optimal conditions for tensile strength in the dissimilar friction stir joint were predicted to be the rotation speed of 3000 rpm and welding speed of 100 mm/min, and the tensile strength under the optimal conditions was estimated to be $214{\pm}6.57Mpa$ with 99% reliability.

Study on the Optimization of Parameters for Burring Process Using 980MPa Hot-rolled Thick Sheet Metal (980MPa급 열연 후판재 버링 공정의 변수 최적화 연구)

  • Kim, S.H.;Do, D.T.;Park, J.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.291-300
    • /
    • 2021
  • Currently, starting with electric vehicles, the application of ultra-high-strength steel sheets and light metals has expanded to improve mileage by reducing vehicle weight. At a time when internal combustion engine vehicles are rapidly changing to electric vehicles, the application of ultra-high-strength steel is expanding to satisfy both weight reductions and the performance safety of the chassis parts. There is an urgent need to improve the quality of parts without defects. It is particularly difficult to estimate the part formability through the finite element method (FEM) in the burring operation, so product design has been based on the hole expansion ratio (HER) and experience. In this study, design of experiment (DOE), analysis of variance (ANOVA), and regression analysis were combined to optimize the formability by adjusting the process variables affecting the burring formability of ultra-high-strength steel parts. The optimal variables were derived by analyzing the influence of variables and the correlation between the variables through FE analysis. Finally, the optimized process parameters were verified by comparing experiment with simulation. As for the main influence of each process variable, the initial hole diameter of the piercing process and the shape height of the preforming process had the greatest effects on burring formability, while the effect of a lower round of punching in the burring process was the least. Moreover, as the diameter of the initial hole increased, the thickness reduction rate in the burring part decreased, and the final burring height increased as the shape height during preforming increased.

Crystal structure of α-acetolactate decarboxylase from Bacillus subtilis subspecies spizizenii (고초균 아종 spizizenii의 α-acetolactate decarboxylase 결정 구조)

  • Eom, Jiyoung;Oh, Han Byeol;Yoon, Sung-il
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • Acetoin is generated by numerous microorganisms using ${\alpha}$-acetolactate decarboxylase (ALDC) to prevent overacidification of cells and their environment and to store remaining energy. Because acetoin has been used as a safe flavor enhancer in food products, industries have been interested in biotechnological production of acetoin using ALDC. ALDC is a metal-dependent enzyme that produces acetoin from ${\alpha}$-acetolactate through decarboxylation reaction. Here, we report the crystal structure of ALDC from Bacillus subtilis subspecies spizizenii (bssALDC) at $1.7{\AA}$ resolution. bssALDC folds into a two-domain ${\alpha}/{\beta}$ structure where two ${\beta}$-sheets form a central core. bssALDC assembles into a dimer through central hydrophobic interactions and peripheral hydrophilic interactions. bssALDC coordinates a zinc ion using three histidine residues and three water molecules. Based on comparative analyses of ALDC structures and sequences, we propose that the active site of bssALDC includes the zinc ion and its neighboring bssALDC residues.