• Title/Summary/Keyword: metal removal rate

Search Result 265, Processing Time 0.024 seconds

Biofilter pretreatment for the control of microfiltration membrane fouling

  • Park, Jae-Hyung;Satoshi Takizawa;Hiroyuki Katayama;Shinichiro Ohgaki
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.31-38
    • /
    • 2003
  • A pilot scale biofilter pretreatment-microfiltration system (BF-MF) was operated to investigate the effect of biofilter treatment in fouling reduction of microfiltration. Biofiltration was expected to reduce the membrane fouling by removal of turbidity and metal oxides. The hollow-fiber MF module with a nominal pore size of 0.1$\mu$m and a surface area of 8m$^2$ was submerged in a filtration tank and microfiltration was operated at a constant flux of 0.5 m/d. Biofiltration using polypropylene pellets was performed at a high filtration velocity of 320 m/d. Two experimental setups composed of MF and BF/MF, i.e., without and with biofilter pretreatment, were compared. Throughout the experimental period of 9 months, biofilter pretreatment was effective to reduce the membrane fouling, which was proved by the result of time variations of trans-membrane pressure and backwash conditions. The turbidity removal rate by biofiltration varied between 40% to 80% due to the periodic washing for biofilter contactor and raw water turbidity. In addition to turbidity, metals, especially Mn, Fe and Al were removed effectively with average removal rates of 89.2%, 67.8% and 64.9%, respectively. Further analysis of foulants on the used membranes revealed that turbidity and metal removal by biofiltration was the major effect of biofiltration pretreatment against microfiltration fouling.

  • PDF

Equilibrium and kinetic studies on the adsorption of copper onto carica papaya leaf powder

  • Varma V., Geetha;Misra, Anil Kumar
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.403-416
    • /
    • 2016
  • The possibility of using carica papaya leaf powder for removal of copper from wastewater as a low cost adsorbent was explored. Different parameters that affect the adsorption process like initial concentration of metal ion, time of contact, adsorbent quantity and pH were evaluated and the outcome of the study was tested using adsorption isotherm models. A maximum of 90%-94.1% copper removal was possible from wastewater having low concentration of the metal using papaya leaf powder under optimum conditions by conducting experimental studies. The biosorption of copper ion was influenced by pH and outcome of experimental results indicate the optimum pH as 7.0 for maximum copper removal. Copper distribution between the solid and liquid phases in batch studies was described by isotherms like Langmuir adsorption and Freundlich models. The adsorption process was better represented by the Freundlich isotherm model. The maximum adsorption capacity of copper was measured to be 24.51 mg/g through the Langmuir model. Pseudo-second order rate equation was better suited for the adsorption process. A dynamic mode study was also conducted to analyse the ability of papaya leaf powder to remove copper (II) ions from aqueous solution and the breakthrough curve was described by an S profile. Present study revealed that papaya leaf powder can be used for the removal of copper from the wastewater and low cost water treatment techniques can be developed using this adsorbent.

Removal of Heavy Metals from Acid Mine Drainage Using Sulfate Reducing Bacteria (황산염환원균을 이용한 폐광폐수의 중금속 제거)

  • Paik, Byeong Cheon;Kim, Kwang Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.47-54
    • /
    • 1999
  • SRB(Sulfate Reducing Bacteria) converts sulfate into sulfide using an organic carbon source as the electron donor. The sulfide formed precipitates the various metals present in the AMD (Acid Mine Drainage). This study is the fundamental research on heavy metal removal from AMD using SRB. Two completely mixed anaerobic reactors were operated for cultivation of SRB at the temperature of $30^{\circ}C$ and anaerobic batch reactors were used to evaluate the effects of carbon source, COD/sulfate($SO_4^=$) ratio and alkalinity on sulfate reduction rate and heavy metal removal efficiency. AMD used in this study was characterized by low pH 3.0 and 1000mg/l of sulfate and dissolved high concentration of heavy metals such as iron, cadmium, copper, zinc and lead. It was found that glucose was an organic carbon source better than acetate as the electron donor of SRB for sulfate reduction in AMD. Amount of sulfate reduction maximized at the COD(glucose)/sulfate ratio of 0.5 in the influent and then removal efficiencies of heavy metals were 97.5% of Cu, 100% of Pb, 100% of Cr, 49% of Mn, 98% of Zn, 100% Cd and 92.4% of Fe. Although sulfate reduction results in an increase in the alkalinity of the reactor, alkalinity of 1000mg/1 (as $CaCo_3$) should be should be added continuously to the anaerobic reactor in order to remove heavy metals from AMD.

  • PDF

Surface removal of stainless steel using a single-mode continuous wave fiber laser to decontaminate primary circuits

  • Song, Ki-Hee;Shin, Jae Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3293-3298
    • /
    • 2022
  • Removing radioactive contaminated metal materials is a vital task during the decommissioning of nuclear power plants to reduce the cost of the post-dismantling process. The laser decontamination technique has been recognized as a key tool for a successful dismantling process as it enables a remote operation in radioactive facilities. It also minimizes exposure of workers to hazardous materials and reduces secondary waste, increasing the environmental friendless of the post-dismantling processing. In this work, we present a thorough and efficient laser decontamination approach using a single-mode continuous-wave (CW) laser. We subjected stainless steels to a surface-removal process that repetitively exposes the laser to a confined region of ~75 ㎛ at a high scanning rate of 10 m/s. We evaluate the decontamination performance by measuring the removal depth with a 3D scanning microscope and further investigate optimal removal conditions given practical parameters such as the laser power and scan properties. We successfully removed the metal surface to a depth of more than 40 ㎛ with laser power of 300 W and ten scans, showing the potential to achieve an extremely high DF more than 1000 by simply increasing the number of scans and the laser power for the decontamination of primary circuits.

Removal of Bromate by Iron, Copper and Silver Impregnated Activated Carbon (철, 구리, 은 첨착활성탄을 이용한 브롬산염의 제거)

  • Choi, Seong-Woo;Park, Seung-Cho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.178-182
    • /
    • 2006
  • The purpose of this research is to remove the bromate that is a disinfection by-poduct of water purification by ozone. I achieved a high rate of removal with iron, copper, or silver impregnated activated carbon by using both the adsorbing power of granular activated carbon and the oxidizing power of metal ions as deoxidizing agents. In the removal test of bromate with the quantity of activated carbon input I injected each activated carbon by 0.1, 0.3, 0.1, and 1.0 g and let them react for 240 minutes. I found the quantity of removed bromate was in proportion to the amount of input. The removal rate of bromate increased about 20% when I used acid treated activated carbon. The metal impregnated activated carbon had a higher removal rate of bromate than that of general activated carbon by about $30{\sim}50%$. Iron impregnated activated carbon showed a 92% removal rate of bromate. Iron, copper, or silver impregnated activated carbon removed about $0.9{\sim}1.5mg\;{BrO_3}^-/g$ while general activated carbon removed about $0.02{\sim}0.45mg\;{BrO_3}^-/g$. In the continuous column reaction, there were breakthrough phenomena at 96, 180, and 252 hours when I tested EBCT by 1, 2 and 3 minutes while I was changing the flux rate of bromate from 15.6 to 46.8 mL/min.

Removal of Hazardous Heavy Metals (Cd, Cr, and Pb) from Laver Pyropia sp. with Acid Treatment (산 처리에 의한 김(Pyropia sp.)의 유해 중금속(Cd, Cr, Pb) 제거 효과)

  • Mok, Jong Soo;Son, Kwang Tae;Lee, Tae Seek;Lee, Ka Jeong;Jung, Yeoun Joong;Kim, Ji Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.5
    • /
    • pp.556-563
    • /
    • 2016
  • We examined the removal of hazardous heavy metals (Cd, Cr, and Pb) from laver Pyropia sp. using citric, hydrochloric, and nitric acids. Under the same conditions, the quality of the laver samples was also evaluated using the variation in absorbance and major mineral levels. The heavy metals that accumulated in raw laver samples after 3 days in seawater included Pb (117.79 μg/g), Cr (33.53 μg/g), and Cd (10.54 μg/g) in descending order. The rate of heavy metal removal from laver was higher at lower pH for all acids used. However, its color changed unsatisfactorily at pH 2.0. After 10 min in seawater at pH 2.5, the heavy metals in laver were eliminated in the order Cd (68.7–81.6%), Pb (57.7–67.0%), and Cr (31.9–49.4%) using the three acids. The differences in heavy metal removal among acid types were not significant. The laver quality was not affected after 20 min at the pH range of 2.5–4.0. The maximum removal of heavy metals was from laver soaked for 10 min in seawater at pH 2.5 using the organic acid, citric acid.

Electrokinetic Removal and Removal Characteristics of Heavy Metals from Metal-Mining Deposit (동전기법에 의한 광산퇴적토의 중금속 제거 특성)

  • Lee, Chang-Eun;Shin, Hyun-Moo
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.227-236
    • /
    • 2003
  • Electrokinetic remediation technique offers the opportunity to extract heavy metals from soils with high plasticity. The experiment demonstrated the applicability of electrokinetic remediation on metal-mining deposit and the decision of the enhancement method for four kinds of bench-scale studies. According to the sequential extraction of heavy metals in the "I" mining deposit, Pb and Cu were mostly associated with residual fraction and Zn and Cd were associated with water soluble and residual fraction. Therefore, removable fractions by electrokinetic technology was determined by the sum of the fraction of water soluble and exchangeable, which is Cu : 19.53%, Pb : 1.42%, Cd : 52.82%, Zn : 57.28%, respectively. When considering electrical potential, volume of effluent, soil pH, and eliminated rate of contaminant, results determined by sum of each weight were Citric aic+SDS (13) > 0.1N $HNO_3$ (10) > HAc (8) > DDW (4). Therefore, citric acid and SDS mixed solution was determined the best enhancing agent for the remediation of metal mining deposit.g deposit.

Kinetics of 2,4,6-Trinitrotoluene reduction by zero valent iron (금속 철을 이용한 TNT의 환원시의 동역학 산정)

  • 배범한
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.04a
    • /
    • pp.62-63
    • /
    • 1999
  • Reduction 2,4,6-Trinitrotoluene by zero valent iron was studied in a batch reactor under anoxic conditions. Results showed that the removal of TNT was a pseudo-first order and the rate was dependent on the available metal surface area. Final product, presumably triaminotoluene, accumulated in the solution as well as on the metal surface. However, little amounts of aminodinitrotoluenes were detected. Therefore, it is postulated that the reduction of nitro group occurs simultaneously in all three position.

  • PDF

Adsorption Characteristics of Multi-Metal Ions by Red Mud, Zeolite, Limestone, and Oyster Shell

  • Shin, Woo-Seok;Kang, Ku;Kim, Young-Kee
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • In this study, the performances of various adsorbents-red mud, zeolite, limestone, and oyster shell-were investigated for the adsorption of multi-metal ions ($Cr^{3+}$, $Ni^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $As^{3+}$, $Cd^{2+}$, and $Pb^{2+}$) from aqueous solutions. The result of scanning electron microscopy analyses indicated that the some metal ions were adsorbed onto the surface of the media. Moreover, Fourier transform infrared spectroscopy analysis showed that the Si(Al)-O bond (red mud and zeolite) and C-O bond (limestone and oyster shell) might be involved in heavy metal adsorption. The changes in the pH of the aqueous solutions upon applying adsorbents were investigated and the adsorption kinetics of the metal ions on different adsorbents were simulated by pseudo-first-order and pseudo-second-order models. The sorption process was relatively fast and equilibrium was reached after about 60 min of contact (except for $As^{3+}$). From the maximum capacity of the adsorption kinetic model, the removal of $Pb^{2+}$ and $Cu^{2+}$ were higher than for the other metal ions. Meanwhile, the reaction rate constants ($k_{1,2}$) indicated the slowest sorption in $As^{3+}$. The adsorption mechanisms of heavy metal ions were not only surface adsorption and ion exchange, but also surface precipitation. Based on the metal ions' adsorption efficiencies, red mud was found to be the most efficient of all the tested adsorbents. In addition, impurities in seawater did not lead to a significant decrease in the adsorption performance. It is concluded that red mud is a more economic high-performance alternative than the other tested adsorption materials for applying a removal of multi-metal in seawater.

산업부산물을 이용한 중금속 제거효율에 관한 연구

  • 권용삼;이기호;박준범;이상훈;박종범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.431-434
    • /
    • 2003
  • Environmental pollution problems due to the wastes from various industrial facilities and activities have become a serious issue. The specific problem associated with heavy metals in the environment is their accumulation in the food chain and their persistence in nature. Present work investigates the possible uses of by-products for the removal of heavy metal ions. Heavy metals used in these studies were cadmium, lead and copper. Experiments were conducted with by-products such as oyster shell and fly ash to evaluate their sorption characteristics. The results of the study indicate that oyster shell can be properly used as an adsorbent for heavy metals because of its outstanding removal rate.

  • PDF