• Title/Summary/Keyword: metal organic chemical vapor deposition

Search Result 314, Processing Time 0.03 seconds

Development of Reuse Process Through Recovery and Refinement of Precursor for LED (LED용 precursor 재이용을 위한 회수 및 정제 공정 개발)

  • Yang, Jae Yeol;O, Byung Sung;Yoon, Jae Sik
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • The purpose of this research is to develop a process and a system to collect, purify and reuse the residual quantity of trimethylgallium, used as a raw material, upon GaN epitaxial growth for LED from a metal organic chemical vapor deposition(MOCVD) equipment. This research reviews whether TMGa collected from the process can be used through a chemical and structural characteristics evaluation. As a result of analyzing the purity using ICP-MS and ICP-AES, 7N high purity (99.99999%) of TMGa was obtained. According to checking the structural change of TMGa through NMR analysis, TMGa having pure $(CH_3)_3Ga$ structure was obtained without structural change. For reliability review of the collected TMGa, u-GaN was deposited using the MOCVD process and an structural, optical and electrical characteristics evaluation was conducted. As a result, it was found out that the reuse was possible.

BST Thin Film Multi-Layer Capacitors

  • Choi, Woo Sung;Kang, Min-Gyu;Ju, Byeong-Kwon;Yoon, Seok-Jin;Kang, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.319-319
    • /
    • 2013
  • Even though the fabrication methods of metal oxide based thin film capacitor have been well established such as RF sputtering, Sol-gel, metal organic chemical vapor deposition (MOCVD), ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD), an applicable capacitor of printed circuit board (PCB) has not realized yet by these methods. Barium Strontium Titanate (BST) and other high-k ceramic oxides are important materials used in integrated passive devices, multi-chip modules (MCM), high-density interconnect, and chip-scale packaging. Thin film multi-layer technology is strongly demanded for having high capacitance (120 nF/$mm^2$). In this study, we suggest novel multi-layer thin film capacitor design and fabrication technology utilized by plasma assisted deposition and photolithography processes. Ba0.6Sr0.4TiO3 (BST) was used for the dielectric material since it has high dielectric constant and low dielectric loss. 5-layered BST and Pt thin films with multi-layer sandwich structures were formed on Pt/Ti/$SiO_2$/Si substrate by RF-magnetron sputtering and DC-sputtering. Pt electrodes and BST layers were patterned to reveal internal electrodes by photolithography. SiO2 passivation layer was deposited by plasma-enhanced chemical vapor deposition (PE-CVD). The passivation layer plays an important role to prevent short connection between the electrodes. It was patterned to create holes for the connection between internal electrodes and external electrodes by reactive-ion etching (RIE). External contact pads were formed by Pt electrodes. The microstructure and dielectric characteristics of the capacitors were investigated by scanning electron microscopy (SEM) and impedance analyzer, respectively. In conclusion, the 0402 sized thin film multi-layer capacitors have been demonstrated, which have capacitance of 10 nF. They are expected to be used for decoupling purpose and have been fabricated with high yield.

  • PDF

Deposition of NiO on hi-axially textured Ni substrates fort YBCO coated conductor by a MOCVD method (양축정렬된 textured Ni 기판위에 MOCVD법을 이용한 YBCO coated conductor 완충층용 NiO 증착)

  • 선종원;김형섭;박순동;정충환;전병혁;김잔중
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.531-534
    • /
    • 2002
  • NiO buffer layers for YBCO coated conductors were deposited on hi-axially textured Ni substrates by MOCVD(metal organic chemical vapor deposition) method, using single solution source. To establish the processing condition, oxygen partial pressure and deposition temperature were changed. The surface orientation and degree of texture were estimated by X-ray diffraction, X-ray pole figure and atomic force microscopy. The FWHMs of in-plane and out-of-plane of the NiO films were about 10$^{\circ}$. The surface roughness was a function of deposition temperature. The AFM surface roughness of NiO films is in the range of 3∼10 nm, when NiO films was grown at 450∼530$^{\circ}C$.

  • PDF

The Effect of Thermal Stability of Cu(I) Precursors on the Deposition in the Metal Organic Chemical Vapor Deposition (MOVCD에 있어서 구리(l)전구체들의 열적 안정성이 증착에 미치는 영향)

  • Park, Man-Young;Lee, Shi-Woo
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.345-353
    • /
    • 1998
  • Metal organic chemical vapor deposition (MOCVD) of copper using three Cu( I ) precursors. (hfac)Cu (VTMS) (hfac= hexafluoroacetylacetonate, VTMS= vinyltrimethylsilane), (hfac)Cu(VTMOS) (VTMOS= vinyltri¬methoxysilane) and (hfac)Cu(A TMS) (A TMS= allyltrimethylsilane) was studied. The thermal stability and the gase¬ous phase reaction mechanism of Cu( I ) precursors were identified using $^1H$-, $^I3C$-NMR and Fourier transform infra¬red spectroscopy. It was found out that thermal stability of liquid phase (hfac)Cu(VTMS) and (hfac)Cu(VTMOS) were better than that of (hfac)Cu(A TMS) using FT - NMR. From in-situ FT - IR experiments, the disproportion reaction of Cu(hfac). the decomposition reaction of Cu(hfac), and cracking of free hfac ligand were observed. Also the effect of gaseous phase reaction on the deposition rates and film properties was investigated. The minimum temperature that deposition of copper films from (hfac)Cu(A TMS) was as low as 60$^{\circ}$C and such a low deposition temperature compared with those of other Cu( I ) precursors is believed to be related with weaken Cu- A TMS bond.

  • PDF

A Study on the III-nitride Light Emitting Diode with the Chip Integration by Metal Interconnection (금속배선 칩 집적공정을 포함하는 질화물 반도체 LED 광소자 특성 연구)

  • 김근주;양정자
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.3
    • /
    • pp.31-35
    • /
    • 2004
  • A blue light emitting diode with 8 periods InGaN/GaN multi-quantum well structure grown by metal-organic chemical vapor deposition was fabricated with the inclusion of the metal-interconnection process in order to integrate the chips for light lamp. The quantum well structure provides the blue light photoluminescence peaked at 479.2 nm at room temperature. As decreasing the temperature to 20 K, the main peak was shifted to 469.7 nm and a minor peak at 441.9 nm appeared indicating the quantum dot formation in quantum wells. The current-voltage measurement for the fabricated LED chips shows that the metal-interconnection provides good current path with ohmic resistance of 41 $\Omega$.

  • PDF

Optical and Electrical Properties of ZnO Hybrid Structure Grown on Glass Substrate by Metal Organic Chemical Vapor Deposition (유기금속화학증착법으로 유리기판 위에 성장된 산화아연 하이브리드 구조의 광학적 전기적 특성)

  • Kim, Dae-Sik;Kang, Byung Hoon;Lee, Chang-Min;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.543-549
    • /
    • 2014
  • A zinc oxide (ZnO) hybrid structure was successfully fabricated on a glass substrate by metal organic chemical vapor deposition (MOCVD). In-situ growth of a multi-dimensional ZnO hybrid structure was achieved by adjusting the growth temperature to determine the morphologies of either film or nanorods without any catalysts such as Au, Cu, Co, or Sn. The ZnO hybrid structure was composed of one-dimensional (1D) nanorods grown continuously on the two-dimensional (2D) ZnO film. The ZnO film of 2D mode was grown at a relatively low temperature, whereas the ZnO nanorods of 1D mode were grown at a higher temperature. The change of the morphologies of these materials led to improvements of the electrical and optical properties. The ZnO hybrid structure was characterized using various analytical tools. Scanning electron microscopy (SEM) was used to determine the surface morphology of the nanorods, which had grown well on the thin film. The structural characteristics of the polycrystalline ZnO hybrid grown on amorphous glass substrate were investigated by X-ray diffraction (XRD). Hall-effect measurement and a four-point probe were used to characterize the electrical properties. The hybrid structure was shown to be very effective at improving the electrical and the optical properties, decreasing the sheet resistance and the reflectance, and increasing the transmittance via refractive index (RI) engineering. The ZnO hybrid structure grown by MOCVD is very promising for opto-electronic devices as Photoconductive UV Detectors, anti-reflection coatings (ARC), and transparent conductive oxides (TCO).

Crystal growth of GaN semiconductor films by counter-flow metal-organic chemical vapor deposition (암모니아 역류형태의 반응로를 이용한 GaN 반도체 박막의 성장)

  • 김근주;황영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.574-579
    • /
    • 1999
  • A counter-flow type horizontal reactor of metal organic chemical vapor deposition was designed with the Reynolds and the Rayleigh numbers of Re = 4.5 and Ra = 215.8, respectively. The GaN thin films were grown and characterized by Hall measurement, double crystal X-ray diffraction analysis and photoluminescence measurement. The Si and Mg were also used for doping of GaN films. The dislocation density of $2.6{\times}10^8/\textrm {cm}^2$ was included in GaN films representing the geometrical lattice mismatch between sapphire substrates and GaN films. The Si doped n-GaN films provide the electron carrier density and mobility in the regions of $10^{17}~10^{18}/\textrm{cm}^3$ and 200~400 $\textrm{cm}^2$/V .sec, respectively. Mg doped p-GaN films were post-annealed and activated with the hole carrier density of $8{\times}10^{17}/{\textrm}{cm}^3$.

  • PDF

Heat Treatment of Carbonized Photoresist Mask with Ammonia for Epitaxial Lateral Overgrowth of a-plane GaN on R-plane Sapphire

  • Kim, Dae-sik;Kwon, Jun-hyuck;Jhin, Junggeun;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.208-213
    • /
    • 2018
  • Epitaxial ($11{\bar{2}}0$) a-plane GaN films were grown on a ($1{\bar{1}}02$) R-plane sapphire substrate with photoresist (PR) masks using metal organic chemical vapor deposition (MOCVD). The PR mask with striped patterns was prepared using an ex-situ lithography process, whereas carbonization and heat treatment of the PR mask were carried out using an in-situ MOCVD. The heat treatment of the PR mask was continuously conducted in ambient $H_2/NH_3$ mixture gas at $1140^{\circ}C$ after carbonization by the pyrolysis in ambient $H_2$ at $1100^{\circ}C$. As the time of the heat treatment progressed, the striped patterns of the carbonized PR mask shrank. The heat treatment of the carbonized PR mask facilitated epitaxial lateral overgrowth (ELO) of a-plane GaN films without carbon contamination on the R-plane sapphire substrate. Thhe surface morphology of a-plane GaN films was investigated by scanning electron microscopy and atomic force microscopy. The structural characteristics of a-plane GaN films on an R-plane sapphire substrate were evaluated by ${\omega}-2{\theta}$ high-resolution X-ray diffraction. The a-plane GaN films were characterized by X-ray photoelectron spectroscopy (XPS) to determine carbon contamination from carbonized PR masks in the GaN film bulk. After $Ar^+$ ion etching, XPS spectra indicated that carbon contamination exists only in the surface region. Finally, the heat treatment of carbonized PR masks was used to grow high-quality a-plane GaN films without carbon contamination. This approach showed the promising potential of the ELO process by using a PR mask.

The effect of the heat treatment of MOCVD Cu thin film on electromigration (MOCVD Copper 박막의 열처리가 Electromigration 특성에 미치는 영향 연구)

  • 이원석;배성찬;손승현;최시영
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.4
    • /
    • pp.194-200
    • /
    • 2002
  • MOCVD(metal-organic chemical vapor deposition) copper thin film was annealed at various conditions and the eletrical properties and micro-structures were investigated to find the optimal annealing condition and its effect. Cu thin film annealed at Ar 1 torr, $400^{\circ}C$ had the most improved resistivity of 1.98 $\mu\Omega$cm, and texture; the ratio of $I_{(111)}/I_{(200)}$ was varied from 2.03 to 3.11, and Cu thin film annealed at Ar 1 torr, $450^{\circ}C$ had the largest grain size and uniformity. After the annealing, the EM(electromigration) test was followed to ensure the improved properties by annealing. Compare to other conditions, Cu patterns annealed at Ar 1 torr, $400 ^{\circ}C$ had the most improved properties when it came to the EM resistance, which was due to the low resistivity, the preferential evolution of texture to (111) plane, and the reduction of surface roughness of annealed copper film.