• 제목/요약/키워드: metal mold

검색결과 561건 처리시간 0.021초

셰이빙 정밀도 향상을 위한 예비전단 가공에서의 가공여유와 틈새의 영향 (Influence of shaving allowance and clearance in pre-shearing process for improving shaving accuracy)

  • 오솔길;조대일;강병두;김종호
    • Design & Manufacturing
    • /
    • 제2권3호
    • /
    • pp.40-44
    • /
    • 2008
  • Shaving in sheet metal forming is defined as a finish process to make the sheared surface clean which was blanked or pierced in the previous shearing stage. In this study the new shaving technique is applied to the progressive operation. The specimen is automatically fed by continuous movement of the strip. Which improve the positioning accuracy higher. For this study a square part which consist of blanking and piercing is selected for investigation and the progressive die which includes pre-piercing, pierce-shaving, half-blanking and blank-shaving etc is prepared for specimens of steel sheet(SPCC) and aluminum alloy sheet(AL5052). Experiments are carried out for several working variables such as shaving allowance, pre-shearing clearance and relative half-blanking depth. Consequently it was confirmed that the shaving by progressive die can be successfully employed to produce the clean parts requiring shaving process and optimum working conditions for shaving SPCC and AL5052 sheet metal are shaving allowance of 0.2mm(1.3% of thickness) and pre-shearing clearance of 5%.

  • PDF

기상측정 및 CAM 자동화를 통한 금형 제작 공정 개선 (Improvement of machining process for mold parts using on-machine measuring system and CAM automation)

  • 박해웅;윤재웅;이춘규
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.21-26
    • /
    • 2022
  • In the CNC machining process, problems such as lowering of machine operation rate, setting errors, and machining precision occur due to the increase in setting time and preparation time. These machining errors cause delays in delivery and increase in cost due to an increase in the number of mounting and dismounting of the workpiece, an increase in measurement and reprocessing time, and an increase in the finishing time in the assembly process. Therefore, in this study, by automating the setting of the work piece using OMV (On Machine Verification), which is a meteorological measurement system, the preparation time for machining the work piece and the setting accuracy were improved, the rework rate was reduced, and the mold manufacturing process was shortened. Through the advancement, standardzation, and automation of the mold part manufacturing process, we have improved productivity by minimizing low-value-added repetitive tasks. In addition, the measurement time was reduced by more than 50% and the machining measurement rate was improved by more than 20%, eliminating repetitive work for correcting machining defects, and reducing the work preparation time by more than 15% through automatic setting.

프로엔지니어(Pro/E) 기반 금형설계 지원 소프트웨어 툴 개발 (Development of A Software Tool for Supporting Metal Mold Design Based on The Pro/E CAD System)

  • 유호영
    • 한국산학기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.1014-1020
    • /
    • 2012
  • 본 논문은 3D 캐드모델을 기반으로 작업자의 수작업 및 설계오류를 최소화하는 금형설계 지원 툴 개발에 초점을 맞춘다. 금형설계 지원범위는 자동차 산업의 프레스 금형설계 공정에서 필수 요소인 선직 곡면 생성 및 옵셋, 패딩력 자동산출, 수정사항을 반영하는 재료표 자동출력, 홀 가공데이터 자동 산출, 원소재 크기 출력 및 검증 등 이다. 개발한 시스템을 주요 범용 3D 모델러 중 하나인 프로엔지니어의 확장 메뉴형태로 탑재하기 위하여 프로엔지니어 API와 Visual C++를 사용하여 개발하였다.

중력주조 공법에서 주조해석 시뮬레이션을 이용한 압탕설계 사례 연구 (Case study of riser design using casting simulation in gravity cast method)

  • 고상배;한기원;김형준;한태수;한성렬;김경아;최계광;윤재웅;이춘규
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.30-35
    • /
    • 2021
  • The casting method uses a mold to solidify a liquid metal to make a solid metal. Since it uses a liquid metal with the least deformation resistance, it has the characteristic that it can easily manufacture even a complex shape. However, the process of solidifying a liquid metal into a solid metal inevitably involves a volume change and contains internal defects such as shrinkage holes. Therefore, in the design of the casting plan, an excess volume called a pressurization compensates for the volume shrinkage. in the product, and it induces the shrinkage hole defects to occur in parts other than the product1). In this study, casting analysis was performed using casting analysis software (anycasting) in order to optimize the design of the tilting gravity casting method for automobile brackets. In particular, the filling and solidification analysis according to the shape and volume of the pressurized metal was conducted, and applied to the actual product to study the effect of the pressurized metal on the shrinkage defect. Through this study, it is possible to understand the effect of the pressure metal on shrinkage defects in the actual product and propose a design of the pressure metal that improves reliability and productivity.

레이저 적층 마레이징강의 기계적 특성 및 피로 특성 (Fatigue and mechanical properties of laser deposited maraging steel)

  • 홍석관
    • Design & Manufacturing
    • /
    • 제12권3호
    • /
    • pp.36-41
    • /
    • 2018
  • Metal 3D printing is very useful for making the injection molds containing complex conformal cooling channels. The most important issue of the 3D printed molds is cost and life cycle. However, powder bed fusion (PBF) methods are vulnerable to fatigue loading because of the presence of pores and rough surfaces. In the present study, the fatigue test was performed to obtain fatigue analysis input data for predicting the durability of a 3D printed injection mold core. The metal 3D printer used to manufacture the specimen was OPM250L from Sodick, and the metal powder material was maraging steel. The ultrasonic fatigue testing method was adopted for the fatigue test. A key advantage of the ultrasonic fatigue method is that $10^8{\sim}10^9$ long cycle test data or more could be obtained within a relatively short period. Based on the results of the experiment, the effect of heat treatment was negligible. However, there was an apparent difference in durability depending on the presence or absence of the surface treatment.

FCS 가변형 몰드 생산을 위한 PCM 분석 (Analysis of Phase Change Materials for Production of Changable Mold for Free-form Concrete Segment)

  • 이동훈;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.150-151
    • /
    • 2014
  • A mold of free-form concrete segment can be used only one time. Thus, the construction duration and cost are increased. The materials of the mold such as wood and metal have limitations due to the implementation and reuse. The review of the material of the mold for free-form concrete segment is needed to reduce duration and production cost. Phase change material can be used both to implement free-shape by heating and to produce mold after cooling. After using Phase change material can be re-used to mold by heating. The scope of this study is many kind of phase change materials for molding. The aim of this study is to analyze the phase change materials for production of changable mold for free-form concrete segment. In this study, the paraffin wax that is melted at 64℃ was selected by considering both the energy efficiency and the weather of Korea.

  • PDF

분말고속도공구강과 고속도공구강의 펀치 수명 비교 (Comparison of punch life of powder high speed tool steel and high speed tool steel)

  • 이우람;이춘규
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.9-14
    • /
    • 2022
  • A lot of research is being done on metal materials to improve the lifespan of molded parts. As a result, excellent mold materials have been developed that withstand high hardness at high temperatures and frictional heat generated from high-speed cutting. In this study, the press mold life of powder high-speed tool steel and general high-speed tool steel was compared. Powdered high-speed steel is composed of alloying elements such as tungsten, maldividene, cobalt, chromium, and vanadium in steel, which improves wear resistance compared to high-hardness and high-speed tool steels. The mold parts of both steel types were manufactured in the same way from heat treatment to machining, and the powder high-speed tool steel was 66HRC and the high-speed tool steel was 61HRC. As a result of the experiment, it was observed that the number of punching of powder high-speed tool steel was improved by 40-50%, and powder high-speed tool steel had fewer impurities, uniform texture, and excellent surface structure. It has a microscopic structure.

사출금형코어 및 성형수지 변화에 따른 두께 방향 수축률에 관한 연구 (A Study on The Thickness Shrinkage of Injection Molded Parts with The Variation of Injection Mold Core and Molding Materials)

  • 신성현;정의철;김미애;채보혜;손정언;김상윤;윤경환;이성희
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.17-21
    • /
    • 2019
  • In this study, selective laser sintered 3D printing mold core and metal core were used to investigate the difference of the thickness shrinkage from the gate of the injection molded part at a constant interval. SLS 3D printing mold core was made of nylon-based PA2200 powder and the metal core was manufactured by conventional machining method. As the PA2200 powder material has low strength, thermal conductivity and high specific heat characteristics compared with metal, molding conditions were set with the consideration of molten temperature and injection pressure. Crystalline resin(PP) and amorphous resin(PS) with low melting temperature and viscosity were selected for the injection molding experiment. Cooling time for processing condition was selected by checking the temperature change of the cores with a cavity temperature sensor. The cooling time of the 3D printing core was required a longer time than that of the metal core. The thickness shrinkage of the molded part compared to the core depth was measured from the gate by a constant interval. It was shown that the thickness shrinkage of the 3D printing core was 2.02 ~ 4.34% larger than that of metal core. In additions, in the case of metal core, thickness shrinkage was increased with distance from the gate, on the contrary, in the case of polymer core showed reversed aspect.