• Title/Summary/Keyword: metal mold

Search Result 561, Processing Time 0.02 seconds

Controlled Surface Functionalities of metals using Femtosecond Laser-induced Nano- and Micro-scale Surface Structures (펨토초 레이저 유도 나노 및 마이크로 구조물을 활용한 금속 표면 기능성 제어)

  • Taehoon Park;Hyo Soo Lee;Hai Joong Lee;Taek Yong Hwang
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • With femtosecond (fs) laser pulse irradiation on metals, various types of nano- and micro-scale structures can be naturally induced at the surface through laser-matter interaction. Two notable structures are laser-induced periodic surface structures (LIPSSs) and cone/spike structures, which are known to significantly modify the optical and physical properties of metal surfaces. In this work, we irradiate fs laser pulses onto various types of metals, cold-rolled steel, pickled & oiled steel, Fe-18Cr-8Ni alloy, Zn-Mg-Al alloy coated steel, and pure Cu which can be useful for precise molding and imprinting processes, and adjust the morphological profiles of LIPSSs and cone/spike structures for clear structural coloration and a larger range of surface wettability control, respectively, by changing the fluence of laser and the speed of raster scan. The periods of LIPSSs on metals used in our experiments are nearly independent of laser fluence. Accordingly, the structural coloration of the surface with LIPSSs can be optimized with the morphological profile of LIPSSs, controlled only by the speed of the raster scan once the laser fluence is determined for each metal sample. However, different from LIPSSs, we demonstrate that the morphological profiles of the cone/spike structures, including their size, shape, and density, can be manipulated with both the laser fluence and the raster scan speed to increase a change in the contact angle. By injection molding and imprinting processes, it is expected that fs laser-induced surface structures on metals can be replicated to the plastic surfaces and potentially beneficial to control the optical and wetting properties of the surface of injection molded and imprinted products.

Automatic Generation of Hexahedral Meshes in Shell Structures (쉘 구조물에서 육면체 요소망의 자동 생성)

  • Lee B.C.;Chae S.W.;Kwon K.Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2006
  • This paper describes hexahedral mesh generation for various shell structures, such as automobile bodies, plastic injection mold components and sheet metal parts by using chordal surfaces. After generaling one-layered tetrahedral mesh by an advancing front algorithm, the chordal surfaces are constructed by cutting of tetrahedral elements. Since the choral surfaces are composed of tri/quad elements with poor quality, they are transformed into quadrilateral elements with good quality. Hexahedral elements are then generated by offsetting these quadrilateral elements. The boundary nodes of hexahedral elements are generated on the outer surfaces of the original shell structures. Sample models including nonuniform thickness have been tested to validate the proposed algorithm.

A Study on the Efficient Flow Analysis due to Valve Shape (밸브 형상에 따른 효율적인 유동해석에 관한 연구)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.17-22
    • /
    • 2020
  • This study investigates the flow efficiency based on valve shape. Three models are designed for the throttle, ball, and butterfly valves. Results show that Flow Model B, representing the ball valve, demonstrates the fastest flow rate among the three models. Although pressure contours are present on the side surfaces of the valve wings for all models, Flow Model C, representing the butterfly valve, demonstrates to be under the least amount of applied pressure among the three models. The results of this study can be utilized to efficiently control the air flow through various types of valves.

A Study on Compression Molding Process of Long Fiber Reinforced Plastic Composites -Effect of Needle Punching on Viscosity- (장섬유강화 플라스틱 복합재의 압축성형 공정에 관한 연구 -점도에 미치는 니들펀칭의 영향-)

  • 송기형;조선형;이용신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.184-187
    • /
    • 2002
  • Compression molding was specifically developed for replacement of metal components with composites. As the mechanical properties of the products are dependent on the separation and orientation, it is important to research the fiber mat structure and molding conditions. In this study, the effects of the fiber mat structure(NP: 5, 10, 25punches/$\textrm{cm}^2$) and the mold closure speed($\dot{\textrm{h}}$=0.1, 1, 10mm/min) on the viscosity of composites were discussed. The composites is treated as a Non-Newtonian power-law fluid. The parallel-plate plastometer is used and the viscosity is obtained from the relationship between the compression load and the thickness of the specimen.

  • PDF

Flow Analysis due to the Slant Angle of a Windscreen at the Front of a Car Body (차체 전방의 앞 유리 경사각도에 따른 유동해석에 관한 연구)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.9-14
    • /
    • 2020
  • In this study, CFX analyses were performed with flow models to minimize the flow resistance due to the windscreen on the front of a car body. The results indicated that the greater the slant angle of the windshield, the greater the maximum pressure area. The lower the slant angle of the windscreen, the smaller the area in which the air collides with the front of the car body and the more smoothly the air moves. The results of this study can be applied to increase fuel economy under driving conditions by changing the slant angle of the vehicle's windscreen.

The Development of Intelligent Polishing Robot Automation System of the Metal-Mold using Personal Computer Program and Automatic Tool Change System (자동공구교환장치와 PC용 프로그램을 이용한 지능형 연마 로봇시스템의 개발)

  • 안종석;유범상;오영섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.3-8
    • /
    • 2002
  • An intelligent polishing robot automation system is developed. Automatic Tool Change System(A.T.C.), Tool Posture Angle Control, and Robot Program for Polishing Application are developed and integrated into a robotic system that consists of a robot, pneumatic finding tool, and finding abrasives (papers and special films). A.T.C. is specifically designed to exchange whole grinding tool set for complete unmanned operation. Tool Posture Angle Control is developed to give a certain skew angle rather than right angle to tools on the surface for best finishing results. A.T.C. and Tool Posture Angle Control is controlled by a PC and the robot controller. Also, there have been some considerations on enhancing the performance of the system. Some elastic material is inserted between the grinding pad and the holder for better grinding contact. The robot path data is generated automatically from the NC data of previous machining process.

  • PDF

High speed machining of cavity pattern in prehardened mold using the small size tool (소경 공구를 이용한 고경도 패턴 금형의 고속 가공)

  • Im, Pyo;Jang, Dong-Kyu;Lee, Hee-Kwan;Yang, Kyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.133-139
    • /
    • 2004
  • High speed machining (HSM) can reduce machining time with the high metal removal rate by high speed spindle and feedrate. This paper supports HSM technology using the small size tool with the optimal tool path generation and modification of tool change. The optimum tool path is generated to reduce cutting length of cavity pattern and change the cutting tool for preventing the tool breakage by wear. The tool path is modified with the experiment data of tool wear and breakage to support tool change on reasonable time. The result can contribute to HSM technology of high hardness materials using the small size end-mill.

Fabrication of Cores for the Injection Mould with a High Cooling Rate and Injection Molding Using the Fabricated Core (고속 냉각 특성을 가진 사출성형 금형 코어 제작 및 사출 성형)

  • Ahn, D.G,
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.549-554
    • /
    • 2007
  • The objective of this paper is to investigate into the fabrication technology of cores for the injection mould with three-dimensional conformal cooling channels to reduce the cooling time. The location of the conformal cooling channels has been determined through the injection molding analysis. The mould has been manufactured from a hybrid rapid tooling technology, which is combined a direct metal rapid tooling with a machining process. Several injection molding experiments have been performed to examine the productivity and the validity of the designed mould. From the results of the experiments, it has been shown that the proposed mould can mold a final product within a cooling time of 3 seconds and a cycle time of 21 seconds, respectively.

Studies on acid protease produced from Aspergillus tubingensis I (Aspergillus tubingensis의 acid protease에 관한 연구 I)

  • Chung, Yun-Su;Cho, Young;Han, Suk-Hyun
    • Korean Journal of Microbiology
    • /
    • v.20 no.3
    • /
    • pp.105-112
    • /
    • 1982
  • The strain of Aspergillus, 6368A, producing acid protease showing high activity was isolated from soil, as a result of wide research about mold group. This strain was identified as a species of Aspergillus tubingensis by the investigation of morphological characteristics. The change of the enzyme production under the various media and culture condition was also studied. The optimum pH and stability of crude acid protease are 2.5, 2.0~4.5 and the optimum temeprature and thermal inactivation waas shown $50^{\circ}C,\;55^{\circ}C$, respectively. From the result of the study on the effects of metal ions, it was found that $MnCl_2,\;CoCl_2,\;CuCl_2,\;SrCl_2,\;and\;NiCl_2$ slightly increased the enzyme activity, on the other hand $ZnCl_2,\;CaCl_2,\;MgCl_2,\;SLS,\;and\;KMnO_4$ decreased it.

  • PDF

Fabrication of Mold and Part by Using SLA Master Models (급속광조형 마스터 모델을 이용한 제품 및 간이 금형 제작)

  • Park, Moon-Sun;Kim, Dae-Hwan;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.7-13
    • /
    • 1999
  • The potential for growth and the future impact of Rapid Prototyping that it will have on the product development cycle are enormous. Since making tools, precedes making parts, Rapid Tooling becomes widely used in automobile, aerospace, electronic, and other industries. In this study, master models formed by Rapid Prototyping of Stereolithography have been applied for vacuum casting to obtain silicone patterns which have transformed into epoxy models. The epoxy models have been measured to check dimension errors, and tested their functions. These checking and measurement have provided information on plastic injection possibilities and data for die design, Temporary die making with the materials of Aluminum/Epoxy and powder injection metal (PIM) has also been discussed in terms of hardness, surface roughness, and SEM microstructures.

  • PDF