• Title/Summary/Keyword: metal mold

Search Result 561, Processing Time 0.023 seconds

Application of femtosecond laser hole drilling with vibration for thin Invar alloy using fine metal mask in AMOLED manufacturing process (AMOLED 제조공정에 사용되는 Fine Metal Mask 용 얇은 Invar 합금의 진동자를 이용한 펨토초 레이저 응용 홀 드릴링)

  • Choi, Won-Suk;Kim, Hoon-Young;Shin, Young-Gwan;Choi, Jun-ha;Chang, Won-Seok;Kim, Jae-Gu;Cho, Sung-Hak;Choi, Doo-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.44-49
    • /
    • 2020
  • One of display trends today is development of high pixel density. To get high PPI, a small size of pixel must be developed. RGB pixel is arranged by evaporation process which determines pixel size. Normally, a fine metal mask (FMM; Invar alloy) has been used for evaporation process and it has advantages such as good strength, and low thermal expansion coefficient at low temperature. A FMM has been manufactured by chemical etching which has limitation to controlling the pattern shape and size. One of alternative method for patterning FMM is laser micromachining. Femtosecond laser is normally considered to improve those disadvantages for laser micromachining process due to such short pulse duration. In this paper, a femtosecond laser drilling for thickness of 16 ㎛ FMM is examined. Additionally, we introduce experimental results for controlling taper angle of hole by vibration module adapted in laser system. We used Ti:Sapphire based femtosecond laser with attenuating optics, co-axial illumination, vision system, 3-axis linear stage and vibration module. By controlling vibration amplitude, entrance and exit diameters are controllable. Using vibrating objective lens, we can control taper angle when femtosecond laser hole drilling by moving focusing point. The larger amplitude of vibration we control, the smaller taper angle will be carried out.

Microstructure, Defects and Mechanical Properties of DED Metal Deposited Heat-Resistant Mold Steel (내열 금형강 DED 금속적층재의 조직, 결함 및 기계적 물성 평가)

  • Choi, Sung-Jong;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.12-21
    • /
    • 2022
  • Directed energy deposition (DED) was adopted as a metal additive manufacturing method to develop a mold for the hot stamping process. The test piece was machined from Heatvar laminate material, and results were obtained through microstructure and defect observations, as well as hardness, tensile strength, and joint strength tests. 1) Spherical pores and irregular-shaped cavities were observed as lamination defects, and columnar dendrites formed in the structure, which tended to become coarse upon heat treatment. 2) The hardness of the heat-treated material (480HV) was slightly lower than that of the non-heat-treated material (500HV). 3) In the tensile test, the maximum tensile stress and strain of the heat-treated material were 1392 MPa and 15%, respectively, which were slightly higher than the values of 1381 MPa and 13%, respectively, for the non-heat-treated material. 4) In the case of the early final fracture in the tensile test, in most cases, pores or irregularly shaped cavities were observed at the fracture surface or near the surface. 5) In the joint strength test, most of the specimens finally fractured in the laminated metal area, and the fracture surface was intragranular. In addition, dimples formed over the entire area on the fracture surface of the fractured specimen after sufficient elongation.

The Development of an Automatic Molten Metal Supplier for an Aluminum Thermal Furnace (알루미늄 보온로 용탕 자동공급 시스템 개발)

  • Lee, Jun-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.483-490
    • /
    • 2009
  • The objective of this development project is to localize an automatic molten metal supplier that has been distributed by WESTOMAT, Germany, throughout the world. To achieve this purpose, an energy-saving pressurized dosing furnace and molten metal differential pressure control system that Is able to automatically supply a determined quantity of aluminum molten metal were developed. The localized equipment was installed in a site. Also, the results of the test operation of this equipment can be summarized as follows: It was able to improve the productivity because there were small decreases in supplying speeds and small losses in wastes compared to the existing mechanical molten metal supplier. Also, it was able to minimize the cost in maintenances due to the direct application of high temperature molten metals to molds. In addition, there were small energy losses due to the use of high thermal insulators compared to the existing reverberating furnace and able to prolong the life-time of furnaces and produce good quality nonferrous metals because it represented small carbon refractories and alumina in applied molten metals. Furthermore, it demonstrated no particular differences by objectively comparing it with the product by WESTOMAT.

  • PDF

Effects of Heat-Treatment Conditions on the Properties of Cu-Be-Co Alloy (Cu-Be-Co합금의 물성에 미치는 열처리 조건의 영향)

  • Jung, Woon-Jae;Kyoung, Shin-Ho;Kim, Ki-Tae;Kim, Jong-In
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.233-239
    • /
    • 1994
  • The effects of solid solution treatment and aging in the properties of Cu-0.32wt%Be-1.35wt%Co alloy was gravity die casted and forged were investigated in order to examine the optimum heat treatment conditions for production of high conductivity mold material. The optimum properties for mold material were obtained under the conditions which were solid solution treated at $930^{\circ}C$ for 1 hour and aged at $430^{\circ}C$ for 2hours.

  • PDF

Solidification Phenomena of Al-4.5wt.% Cu Alloy under Moderate Pressures (고압하에서의 Al-4.5wt.%Cu합금의 응고현상)

  • Cho, In-Sung;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.156-163
    • /
    • 1995
  • Solidification of aluminum alloys under moderate pressures has been investigated. Interfacial heat transfer coefficient at the casting/mold interface varies with time after pouring the molten metal into the die cavity, and therefore plays an important role in determining solidification sequence. The heat transfer coefficients were evaluated by using an inverse problem method, based on the measured temperature distribution. The calculated heat transfer coefficients were used for solidification simulation in the squeeze casting process. The effects of applied pressure and positions of insulation in the mold have also been investigated on solidification microstructures and on the formation of macrosegregation of Al-4.5wt.%Cu alloys.

  • PDF

Quantitative Prediction of Gas Evolved by Shell Core in Permanent Mold Casting of Aluminum Alloy (알루미늄합금 중력금형주조용 쉘중자 가스발생량의 정량적 예측)

  • Kim, Ki-Young;Yi, Min-Soo
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.481-487
    • /
    • 1998
  • Shell sand is widely used to make a complex shape castings due to its good collapsibility. When molten metal is poured into the mold, various gases are generated by the thermal decomposition of binder in the shell core. Casting defects such as blow hole and blister come from these gases. If it is possible to predict the evolution of gas quantitatively, it may provide effective solutions for minimizing the casting defects. To examine the gas evolution by shell core quantitatively, casting experiment and calculation were carried out. Gas pressure and gas volume evolved by shell core were measured in the experiment, and temperature distribution in the shell core was obtained by heat transfer analysis. From the result above, prediction on the gas volume evolved during pouring was tried. As forming pressure of the shell core increased and forming temperature decreased, the gas evolution increased. There was a close relationship between the calculated gas volume evolved and the measured one.

  • PDF

A Study of a Simultaneous Filling and Solidification During Casting Process (충전과 상변화 현상을 포함한 주조과정에 대한 연구)

  • Im, lk-Tae;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.987-996
    • /
    • 1999
  • An algorithm for modeling the filling of metal into a mold and solidification has been developed. This algorithm uses the implicit VOF method for a filling and a general implicit source-based method for solidification. The model for simultaneous filling and solidification is applied to the two-dimensional filling and solidification of a square cavity. The effects of the wall temperature and gate position on the solidification are examined. The mixed natural convection flow and residual flow resulting from the completion of a filling are included in this study to investigate the coupled effects of the filling and natural convection on solidification. Two different filling configurations (assisting flow and opposite flow due to the gate position) are analysed to study the effects of residual flow on solidification. The results clearly show the necessity to carry out a coupled filling and solidification analysis including the effect of natural convection.

A Study on Development of Spin-Casting Process with CNC Machining (CNC 머시닝을 이용한 Spin-Casting 공정개발에 관한 연구)

  • 박주성;양화준;장태식;이일엽;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.616-619
    • /
    • 2002
  • Spin casting is one of useful methods to manufacture metal parts with low mold cost and short delivery time. But the silicon rubber based conventional method has several problems such as poor dimensional accuracy, limitation in casting materials and its dependency on speciality in meld making process. To solve those problems, this paper suggests a steel based mold making method using direct CNC machining and the experimental results shows that the parts from the developed method has better dimensional accuracy and surface roughness than those from the conventional method.

  • PDF

A Study on the Improvement of Formability of Embossing Structure (엠보싱 구조재의 성형성 향상에 관한 연구)

  • Kim H.J.;Jung D.W.;Choi D.S.;Jae T.J.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1269-1272
    • /
    • 2005
  • Sandwich structures, which are composed of thick core between two thin faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. In this research, we have investigated the embossing configuration at the sheet metal shape through research with regard to the construction that the hardness and stiffness are excellent, and formability is advantage as inner structure. Through the FLD analysis according to the pattern changes, we have confirmed the forming possibility and variation of the aspect thickness. Also, we have fabricated the embossing press mold according to the pattern changes, and obtained the embossing inner structure the forming experiments.

  • PDF

A study on basis of metal inner structure by roll forming machine (롤 성형기를 이용한 금속 내부구조물 기초 실험)

  • 김형종;정동원;최두선;제태진;박재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1452-1455
    • /
    • 2004
  • Sandwich structures, which are composed of a thick core between two thin faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. Depending on the application of a particular sandwich structure, various types of cores can be used. The production of sandwich sheets by a rolling process, which is a more efficient and economical approach compared to other types of processes, has become an increasingly important subject of study. In this paper, we have studied the embossing structure of sheet type and developed embossing roll mold with $\Phi$3 pattern and roll forming system.

  • PDF