• 제목/요약/키워드: metal membrane

검색결과 633건 처리시간 0.023초

바이오센서로 응용을 위한 양극산화알루미늄의 양극산화 온도에 따른 제작 및 전기적 특성 (Fabrication and Electrical Properties of Anodic Aluminum Oxide Membrane with Various Anodizing Temperatures for Biosensor)

  • 여진호;이성갑;김용준;이영희
    • 한국전기전자재료학회논문지
    • /
    • 제27권6호
    • /
    • pp.394-398
    • /
    • 2014
  • We fabricated the electrolyte-dielectric-metal (EDM) sensor on the base of AAO (anodic aluminum oxide) template with variation of the anodizing temperature. When a surface is immersed or created in an aqueous solution, a discontinuity is formed at the interface where such physicochemical variables as electrical potential and electrolyte concentration change significantly from the aqueous phase to another phase. Because of the different chemical potentials between the two phases, charge separation often occurs at the interfacial region [1]. This interfacial region, togeter with the charged surface, is usually known as the electrical double layer (EDL) [2]. The structural and electrochemical properties of AAO sensor were investigated for applications in capacitive pH sensors. To change the thickness of the AAO template, the anodizing temperature was varied from $5^{\circ}C$ to $20^{\circ}C$, the thickness of the AAO template invreased from 300 nm to 477 nm. The pH sensitivity of sensors with the anodizing temperature of $20^{\circ}C$ showed the highest value of 56.4 mV/pH in the pH range of 3 to 11. The EDM sensor with the anodizing temperature of $20^{\circ}C$ exhibited the best long-term stability of 0.037 mV/h.

Identification and Characterization of the Acid Phosphatase HppA in Helicobacter pylori

  • Ki, Mi-Ran;Yun, Soon-Kyu;Choi, Kyung-Min;Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권5호
    • /
    • pp.483-493
    • /
    • 2011
  • An acid phosphatase (HppA) activated by $NH_4Cl$ was purified 192- and 34-fold from the periplasmic and membrane fractions of Helicobacter pylori, respectively. SDS-polyacrylamide gel electrophoresis revealed that HppA from the latter appears to be several kilodaltons larger in molecular mass than from the former by about 24 kDa. Under acidic conditions (pH${\leq}$4.5), the enzyme activity was entirely dependent on the presence of certain mono- and/or divalent metal cations (e.g., $K^+$,$ NH_4{^+}$, and/or $Ni^{2+}$). In particular, $Ni^{2+}$ appeared to lower the enzyme's $K_m$ for the substrates, without changing $V_{max}$. The purified enzyme showed differential specificity against nucleotide substrates with pH; for example, the enzyme hydrolyzed adenosine nucleotides more rapidly at pH 5.5 than at pH 6.0, and vice versa for CTP or TTP. Analyses of the enzyme's N-terminal sequence and of an $HppA^-$ H. pylori mutant revealed that the purified enzyme is identical to rHppA, a cloned H. pylori class C acid phosphatase, and shown to be the sole bacterial 5'-nucleotidase uniquely activated by $NH_4Cl$. In contrast to wild type, $HppA^-$ H. pylori cells grew more slowly. Strikingly, they imported $Mg^{2+}$ at a markedly lowered rate, but assimilated urea rapidly, with a subsequent increase in extracellular pH. Moreover, mutant cells were much more sensitive to extracellular potassium ions, as well as to metronidazole, omeprazole, or thiophenol, with considerably lowered MIC values, than wild-type cells. From these data, we suggest that the role of the acid phosphatase HppA in H. pylori may extend beyond 5'-nucleotidase function to include cation-flux as well as pH regulation on the cell envelope.

Micromachined ZnO Piezoelectric Pressure Sensor and Pyroelectric Infrared Detector in GaAs

  • Park, Jun-Rim;Park, Pyung
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권2호
    • /
    • pp.239-244
    • /
    • 1998
  • Piezoelectric pressure sensors and pyroelectric infrared detectors based on ZnO thin film have been integrated with GaAs metal-semiconductor field effect transistor (MESFET) amplifiers. Surface micromachining techniques have been applied in a GaAs MESFET process to form both microsensors and electronic circuits. The on-chip integration of microsensors such as pressure sensors and infrared detectors with GaAs integrated circuits is attractive because of the higher operating temperature up to 200 oC for GaAs devices compared to 125 oC for silicon devices and radiation hardness for infrared imaging applications. The microsensors incorporate a 1${\mu}$m-thick sputtered ZnO capacitor supported by a 2${\mu}$m-thick aluminum membrane formed on a semi-insulating GaAs substrate. The piezoelectric pressure sensor of an area 80${\times}$80 ${\mu}$m2 designed for use as a miniature microphone exhibits 2.99${\mu}$V/${\mu}$ bar sensitivity at 400Hz. The voltage responsivity and the detectivity of a single infrared detector of an area 80${\times}$80 $\mu\textrm{m}$2 is 700 V/W and 6${\times}$108cm$.$ Hz/W at 10Hz respectively, and the time constant of the sensor with the amplifying circuit is 53 ms. Circuits using 4${\mu}$m-gate GaAs MESFETs are fabricated in planar, direct ion-implanted process. The measured transconductance of a 4${\mu}$m-gate GaAs MESFET is 25.6 mS/mm and 12.4 mS/mm at 27 oC and 200oC, respectively. A differential amplifier whose voltage gain in 33.7 dB using 4${\mu}$m gate GaAs MESFETs is fabricated for high selectivity to the physical variable being sensed.

  • PDF

미생물 연료전지에서 Fe[III] 환원 미생물 Geobacter sulfurreducens를 이용한 전기 생산 (Electricity Production from Fe[III]-reducing Bacterium Geobacter sulfurreducens in Microbial Fuel Cell)

  • 이유진;오유관;김미선
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.498-504
    • /
    • 2008
  • Metal-reducing bacterium, Geobacter sulfurreducens is available for mediator-less microbial fuel cell (MFC) because it has biological nanowires(pili) which transfer electrons to outside the cell. In this study, in the anode chamber of the MFC system using G. sulfurreducens, the concentrations of NaCl, sodium phosphate and sodium bicarbonate as electrolytes were mainly optimized for the generation of electricity from acetate. 0.4%(w/v) NaClO and 0.5M $H_2SO_4$ could be utilized for the sterilization of acrylic plates and proton exchange membrane (major construction materials of the MFC reactor), respectively. When NaCl concentration in anode phosphate buffer increased from 5 to 50 mM, power density increased from 6 to $20\;mW/m^2$. However, with increasing sodium phosphate buffer concentration from 5 to 50 mM, power density significantly decreased from 18 to $1\;mW/m^2$. Twenty-four mM sodium bicarbonate did not affect electricity generation as well as pH under 50 mM phosphate buffer condition. Optimized anode chamber of MFC using G. sulfurreducens generated relatively high power density ($20\;mW/m^2$) with the maximum coulombic efficiency (41.3%).

Removal of Pb(II) from wastewater by biosorption using powdered waste sludge

  • Jang, Hana;Park, Nohback;Bae, Hyokwan
    • Membrane and Water Treatment
    • /
    • 제11권1호
    • /
    • pp.41-48
    • /
    • 2020
  • Lead is a highly toxic heavy metal that causes serious health problems. Nonetheless, it is increasingly being used for industrial applications and is often discharged into the environment without adequate purification. In this study, Pb(II) was removed by powdered waste sludge (PWS) based on the biosorption mechanism. Different PWSs were collected from a submerged moving media intermittent aeration reactor (SMMIAR) and modified Ludzack-Ettinger (MLE) processes. The contents of extracellular polymeric substances were similar, but the surface area of MLE-PWS (2.07 ㎡/g) was higher than that of SMMIAR-PWS (0.82 ㎡/g); this is expected to be the main parameter determining Pb(II) biosorption capacity. The Bacillaceae family was dominant in both PWSs and may serve as the major responsible bacterial group for Pb(II) biosorption. Pb(II) biosorption using PWS was evaluated for reaction time, salinity effect, and isotherm equilibrium. For all experiments, MLE-PWS showed higher removal efficiency. At a fixed initial Pb(II) concentration of 20 mg/L and a reaction time of 180 minutes, the biosorption capacities (qe) for SMMIAR- and MLE-PWSs were 2.86 and 3.07 mg/g, respectively. Pb(II) biosorption using PWS was rapid; over 80% of the maximum biosorption capacity was achieved within 10 minutes. Interestingly, MLE-PWS showed enhanced Pb(II) biosorption with salinity values of up to 30 g NaCl/L. Linear regression of the Freundlich isotherm revealed high regression coefficients (R2 > 0.968). The fundamental Pb(II) biosorption capacity, represented by the KF value, was consistently higher for MLE-PWS than SMMIAR-PWS.

Pseudomonas aeruginosa KS47에 의한 절삭유의 생물학적 분해 (Biodegradation of Cutting Oil by Pseudomonas aeruginosa KS47)

  • 김란희;이상섭
    • 미생물학회지
    • /
    • 제44권1호
    • /
    • pp.22-28
    • /
    • 2008
  • 본 실험은 생분해가 어려운 절삭유를 단일 균주에 의해 생물학적 처리를 하는 데에 목적이 있다. 절삭유, 절삭폐유로부터 호기 균주 81개를 분리하여 이중 절삭유 분해능이 가장 높은 균주로, 48시간 내에 90.4%를 제거한(초기농도 699.1 mg/L) KS47을 선별하였다. KS47은 형태학적, 생리 화학적, 16S rDNA 염기서열, 그리고 지방산 분석을 통해 Pseudomonas aeruginosa로 동정되었다. P. aeruginosa KS47은 절삭유를 탄소원으로 사용하여 성장 할 수 있었으며, 절삭유 분해시, 최적 분해 조건은 1.5 g/L(wet weight), pH 7.0, $30^{\circ}C$이었다. 최적 조건 하에서 절삭유의 제거능을 본 결과, 1,060 mg/L의 절삭유를 12시간 내에 83.7% 제거함을 확인하였다.

MOF 기반 멤브레인 기능화된 ZnO 나노선의 수소 가스 선택성 (MOF-based membrane encapsulated ZnO nanowires for H2 selectivity)

  • 김재훈;이재형;김진영;김상섭
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.106-106
    • /
    • 2017
  • 가스센서는 사내 및 산업 환경에서의 유독성 또는 폭발성 가스 검출, 환경 모니터링, 질병 진단 등 매우 다양한 응용분야에서 큰 관심을 가지고 있다. 반도체 금속산화물(SMOs) 기반의 센서 분야에서는 이들의 감도 및 선택성을 향상시키기 위해 많은 노력을 기울이고 있다. 이는 센서의 선택성을 부여하게 되면 다양한 가스들이 존재하는 환경에서도 검출자가 원하는 가스만의 응답을 얻을 수 있기 때문이다. 본 연구에서는 MOF(Metal-Organic Framwork) 기반 멤브레인으로 ZIF-8(Zeolitic Imidazolate Frameworks 구조들 중 하나) 멤브레인 쉘 층을 이용하여 ZnO 나노선에 형성하였다. ZnO 나노선은 VLS공정 (Vapor-Liquid-Solid)을 이용하여 패턴된 전극을 갖는 $SiO_2$-grown Si 웨이퍼 상에 성장되었고, 성장된 ZnO 나노선은 2-methyl imidazole과 methanol이 포함된 고용체에 넣고 폐쇄된 압력용기 속에서 가열시켜 얻게 된다. 이렇게 얻어진 ZIF-8@ZnO 나노선의 ZIF-8 멤브레인은 분자 체 구조(molecular sieving structure)를 갖게 되며, 이들의 pore 크기는 약 $3.4{\AA}$을 갖는다. 따라서 이보다 더 큰 동적 직경을(kinetic diameter) 갖는 가스 종은 이 멤브레인을 통과할 수 없음을 나타내므로 제작된 시편은 $H_2$(kinetic diameter : $2.89{\AA}$), $C_7H_8$(kinetic diameter : $5.92{\AA}$), 그리고 $C_6H_6$(kinetic diameter : $5.27{\AA}$) 가스들을 각각 사용함으로써 ZIF-8@ZnO 나노선의 센서 특성을 조사했으며, 보다 정확한 비교를 위해 순수한 ZnO 나노선 역시 동일한 조건에서 측정되었다. 결과를 통해, 수소 가스를 제외한 다른 가스들에 대해서는 반응을 하지 않고, 오직 수소 가스에 대해서만 반응을 나타냈으며, 순수 ZnO 나노선의 수소 감응도보다 낮은 감응도를 나타내었다. 이는 멤브레인 쉘 층을 형성함으로써 ZnO 나노선의 표면적이 감소해 가스 분자와의 접촉점을 감소시키기 때문이라고 판단된다. 이와 같은 MOF 멤브레인의 캡슐화 전략은 가스센서뿐 아니라 바이오 센서 및 광촉매 등과 같은 이온 선택성을 필요로 하는 다양한 응용분야에 적용될 수 있을 것으로 기대된다.

  • PDF

Expression, Purification, Crystallization and Preliminary X-Ray Crystallographic Analysis of CnrX from Cupriavidus metallidurans CH34

  • Kim, Kook-Han;Jung, Eun-Jung;Im, Ha-Na;Lelie, Daniel Van Der;Kim, Eunice Eun-Kyeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.43-47
    • /
    • 2008
  • The nickel and cobalt resistance of Cupriavidus metallidurans CH34 is mediated by the CnrCBA efflux pump encoded by the cnrYHXCBAT metal resistance determinant. The products of the three genes cnrYXH transcriptionally regulate expression of cnr. CnrY and CnrX are membrane-bound proteins, probably functioning as anti-sigma factors, whereas CnrH is a cnr-specific extracytoplasmic functions (ECF) sigma factor. The periplasmic domain of CnrX (residues 29-148) was cloned as a N-terminal His-tagged protein, expressed in Escherichia coli, and purified using affinity chromatography and gel filtration. The molecular mass was estimated to be about 13.6kDa by size exclusion chromatography, corresponding to a monomer. The tetragonal bipyramid crystals were obtained by mixing an equal volume of protein in 50mM Tris-HCl, pH 7.5, 1% glycerol, 100mM NaCl, 1mM DTT, and the reservoir solution of 15% w/v PEG 2000, 100mM lithium chloride at 277K in 2-4 days using hanging drop vapor diffusion. The protein concentration was 24mg/ml. The crystal that diffracted to $2.42{\AA}$ resolution belongs to space group $P4_1\;or\;P4_3$ with unit cell parameters of $a=b=32.14{\AA},\;c=195.31{\AA},\;{\alpha}={\beta}={\gamma}=90^{\circ}$, with one molecule of CnrX in the asymmetric unit.

Hepa1c1c7 세포에서 카드뮴에 의한 세포사멸 신호전달체계에 관한 연구 (Apoptotic Signaling Pathway by Cadmium in Hepalclc7 cells)

  • 오경재;염정호
    • Toxicological Research
    • /
    • 제17권3호
    • /
    • pp.215-223
    • /
    • 2001
  • 카드뮴의 주요한 표적장기이며 카드뮴이 만성 및 급성 폭로시 축적되는 가장 중요한 장기인 간의 세포독성을 Hepalclc7세포에서 caspases및 Bax단백질의 활성과 발현 그리고 미토콘드리아 세포막 전위 변화(MPT) 등을 조사하여 다음과 같은 결과를 얻었다. 1. 카드뮴은 농도의존적으로 간세포인 Hepalclc7 세포의 생존율을 감소시켰다. 2. 카드뮴을 농도별로 처리하였을 때 100 M 이상의 농도에서 세포사멸의 특징중의 하나인 DNA분절현상을 확인하였다. 3. 카드뮴 처리 후 caspase-3, caspase-8, caspase-9 의 활성변화를 조사한 결과 caspase-3,-9 pretease 활성이 시간이 경과함에 따라 증가하였다. 4. 카드뮴 처리 후 cytochrome c가 세포질내로 방출되었고 이는 caspase-9 proteas의 활성화를 유도하였다. 5. 카드뮴 처리 후 Bax가 세포질에서 미토콘드리아로 이동하여 cytochrome c의 세포질내로의 방출에 관여하였다. 6. 카드뮴 처리시 미토콘드리아 세포막 전위차의 감소를 JC-1 형광염색을 통하여 확인하였다. 이상의 결과는 카드뮴에 의한 Hepalclc7 세포사멸의 신호전달기전은 세포질내에 있는 Bax가 미토콘드리아로 이동, cytochrome c의 세포질내로의 방출, 그리고 caspase-3, 9 pretease 활성화를 의해서 매개되는 것으로 판단된다. 또한 Bax 단백질의 발현변화가 미토콘드리아의 기능변화에 기여하였으리라 사료된다.

  • PDF

The Efficiency of Zinc-Aspartate Complex on Zinc Uptake in Plasma and Different Organs in Normal SD Rats

  • Kim, Yu-Ri;Kim, Ki-Nam;Shim, Boo-Im;Lee, Seung-Min;Kim, In-Kyoung;Sohn, Sung-Hwa;Park, Myung-Gyu;Park, Hong-Suk;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제3권2호
    • /
    • pp.132-136
    • /
    • 2007
  • Zinc is essential metal and plays a role in a wide variety of physiological and biochemical processes. Prostate gland contains high level of zinc, generally 3-10 folds higher than other organs. Prostatic zinc uptake is resulted from the existence of zinc transporter (ZnT) protein families in membrane. In this study, we investigated the difference of zinc uptake efficiency of zinc-aspartate complex (Zn-Asp) into various organs compared with $ZnSO_4$. We observed that Plasma zinc concentration in both $ZnSO_4$ and Zn-Asp administrated group was increased progressively following administration, and reached a peak level at 2 hr. The increasing pattern of zinc concentration was similar to each groups, however the zinc concentration of Zn-Asp administrated group was higher than that of $ZnSO_4$ administrated group. We found that prostatic zinc level of Zn-Asp administrated group was higher than $ZnSO_4$ administrated group, and was increased approximately $\sim$2.7 fold and $\sim$4.2 fold at 4 and 8 hr after administration. From these observations, we suggest than Zn-Asp has high uptake efficiency of zinc into the prostate gland. Therefore, Zn-Asp is potentially useful treatment of many prostatic diseases.