• 제목/요약/키워드: metal lath

검색결과 25건 처리시간 0.023초

Cu를 함유한 HSLA-100강 용접 열영향부의 미세 조직 및 인성 (Microstructure and Toughness of Weld Heat-Affected Zone in Cu-containing HSLA-100 steel)

  • 박태원;심인옥;김영우;강정윤
    • 열처리공학회지
    • /
    • 제8권1호
    • /
    • pp.53-64
    • /
    • 1995
  • A study was made to characterize the microstructures and mechanical properties of the base metal and the heat-affected zone(HAZ) in Cu-bearing HSLA-100 steel. The Gleeble thermal/mechanical simulator was used to simulated the weld HAZ. The relationship between microstructure and toughness of HAZ was studied by impact test, O. M, SEM, TEM, and DSC. The toughness requirement of military specification value was met in all test temperatures for the base metal. The decrease of HAZ toughness comparing to base plate is ascribed to the coarsed-grain and the formation of bainite. Obliquely sectioned Charpy specimens show that secondary crack propagate easily along bainite lath. Improved toughness(240J) at HAZ of $Tp_2=950^{\circ}C$ is due to the fine grain, and reasonable toughness(160~00J) in the intercritical reheated HZA is achieved by the addition of small amount of carbon which affects the formation of "M-A". Cu precipitated during ageing for increasing the strength of base metal is dissolved during single thermal cycle to $1,350^{\circ}C$ and is precipitated little on cooling and heating during subsequent weld thermal cycle. Thus, the decrease of toughness does not occur owing to the precipitation of Cu.

  • PDF

800 MPa급 고강도강 용접금속의 미세조직 특성 비교 연구 (Microstructural Characteristics of 800 MPa Grade High Strength Steel Weld Metals)

  • 이재희;김상훈;윤병현;김환태;길상철;이창희
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.65-73
    • /
    • 2011
  • Microstructural characteristics of two high strength (600 MPa & 800 MPa) weld metals produced by flux-cored arc welding process (FCAW) were evaluated. The 600 MPa grade weld metal was consisted of 75% acicular ferrite and 25% ferrite which was formed at relatively high temperature (grain boundary ferrite, widmanstatten ferrite, polygonal ferrite). However, the 800 MPa grade weld metal was composed of about 85% acicular ferrite and 15% low temperature forming phases (bainite, martensite). The prior austenite grain size of 800 MPa grade weld metal was decreased by solute drag force. The compositions and sizes of inclusions which are the dominant factors for the formation of acicular ferrite were analyzed by a transmission electron microscopy (TEM). In both 600 MPa and 800MPa grade weld metals, the inclusions were mainly consisted of Ti-oxide and Mn-oxide, and the average size of inclusions was $0.7{\mu}m$. The 800 MPa grade weld metal exhibited higher tensile strength and similar toughness compared with the 600 MPa grade weld metal. This result is mainly due to a higher fraction of low temperature products and a lower fraction of grain boundary ferrite in the 800 MPa grade weld metal.

고강도강 용접금속의 미세조직에 따른 기계적 특성 변화 연구 (Variation of Mechanical Properties according to Microstructure of High Strength Steel Weld Metal)

  • 이재희;김상훈;윤병현;정홍철;이창희
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.70-70
    • /
    • 2010
  • In the present study, to estimate the mechanical properties of 800 MPa grade weld metal, welding was carried out using 800 and 600 MPa grade flux cored arc welding (FCAW) consumable and characteristics of the weld metals were investigated. The chemical composition of weld metals was investigated by an optical emission spectroscopy (OES) method. The microstructure of weld metals was analyzed by optical microscopy (OM) and secondary electron microscopy (SEM). The compositions and sizes of inclusions which are the dominant factors for the nuclei of acicular ferrite were analyzed by an transmission electron microscopy (TEM). In addition, mechanical properties of the weld metals were evaluated through tensile tests and charpy impact tests. Mostly the acicular ferrite phase which has high strength and toughness was observed. The 600 MPa grade weld metal was consisted of 75% acicular ferrite and 25% ferrite which was formed at high temperature (grain boundary ferrite, widmanstatten ferrite, polygonal ferrite). However, the 800 MPa grade weld metal was composed of about 73% acicular ferrite and 27% low temperature phase (bainite, martensite). Toughness was considerably decreased due to the increase of tensile strength (from 600 MPa to 800 MPa). The sizes of inclusions which were observed in both weld metal were $0.4{\sim}0.8\;{\mu}m$, it is effective size to form acicular ferrite.

  • PDF

SM30C의 탄소강에서 템퍼링 온도에 따른 미세조직 변화가 상온 인장특성에 미치는 영향 (Effect of Microstructure Change According to Tempering Temperature on Room Temperature Tensile Properties in Carbon Steel of SM30C)

  • 지예빈;김기범;정종민;김권후
    • 열처리공학회지
    • /
    • 제36권1호
    • /
    • pp.1-6
    • /
    • 2023
  • In order to process plastic with similar mechanical performance to metal materials, it is necessary to improve the strength and hardness of core parts of the injection equipment in extrusion system. The tempering process is a heat treatment performed to reduce brittleness and improve elongation along with improvement of dimensional defects of martensite formed after quenching. In this study, changes in microstructure and mechanical properties according to temperature were evaluated after quenching and tempering of SM30C material. As a result, the strength and hardness were gradually decreased by tempering at 250~400℃, and the decrease was greatly increased under the tempering condition at 450℃. Under the tempering condition of 200~400℃, the main structure was lath martensite, and the precipitation amount and size of needle-shaped cementite increased along the lath with the increase of the tempering temperature. Most of the shape of cementite has a needle-like structure, and the formation of some spherical cementite is observed. Under the tempering condition of 450℃, a mixed structure of ferrite and martensite was formed according to the decomposition of martensite.

고성능 콘크리트의 폭렬방지 공법 시공사례 (A Case Study on the Field Construction of Spalling Resistance Method of High Performance Concrete)

  • 김경민;허영선;이재삼;지석원;이성연;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.610-613
    • /
    • 2006
  • This paper is the fundamental study for manufacture of spalling resistance concrete and also analyses the mechanism and spalling resistance method with materials, mixture proportion and lateral confinement. The present work with the basic experiment achieved successful method for spalling resistance using both proper amounts of fiber contents and lateral confinement using metal lath. Moreover, the developed spalling resistance method was applied for full sized column construction in the Doosan We've Poseidon I field, located in Busan city. Authors investigated the physical properties examining workability, placeability and pumpability. These studies are continuously processing to develop new technology expecting remarkable impact on the spalling resistance and fire resistance performance of high-raise building construction in the future.

  • PDF

고성능 콘크리트의 폭렬방지 공법 현장적용 사례 (Field Application of Spalling Prevention Method of High Performance Concrete)

  • 김경민;허영선;이재삼;지석원;이성연;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.7-10
    • /
    • 2005
  • This paper is about manufacture of spalling resistance concrete and also investigates the spalling mechanism and spalling resistance method with diverse materials, mixture proportion and lateral confinement. The present work with the basic experiment achieved successful method for spatting resistance using both proper amounts of fiber contents and lateral confinement using metal lath. Moreover, the developed spatting resistance method was applied for full sized column construction in the Doosan We've Poseidon I field, located in Busan city. The author investigated the physical properties examining workability, placeability and pumpability. These studies are continuously processing to develop new technology expecting remarkable impact on the spatting resistance and fire resistance performance of high-raise building construction in the future.

  • PDF

고성능 RC 기둥의 재하가열시험에 의한 내화 특성 (Properties of Fire Endurance of High Performance RC Column by Loaded Heating Test)

  • 김경민;김기훈;황인성;이재삼;이성연;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.57-60
    • /
    • 2005
  • This study discusses spalling and fire enduring performance of high performance concrete (HPC) RC column subjected to loading under heating for 3 hours. According to the test, both the plain concrete and the concrete attached with fire enduring PC panel exceed allowable temperature after 60 minutes due to the exposure of steel bar and falling off of concrete resulting from severe spalling failure. It leads to buckling of main bar and at the same time, occurrence of collapse of plain HPC column member is observed after 2 hours and 1 hour 40 minutes's exposure to fire, respectively. On the other hand, HPC applying both PP fiber of 0.1$\%$ by mass of concrete and PP fiber+lateral confinement by metal lath maintains their original cross section, which is satisfied with the 3 hours fire endurance criteria, by discharging internal vapour pressure and enhanced lateral confinement force.

  • PDF

섬유복합모르터의 뿜칠마감에 의한 고강도콘크리트 기둥부재의 폭렬방지 (Spatting Resistance of High Strength RC Column Covering Spray-on Materials of Fiber Composite Spray Mortar(FCSM))

  • 송용원;한동엽;이건철;고경택;김진수;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.5-8
    • /
    • 2006
  • High strength concrete has been increasingly used in high rue building and it is very obvious re consider fire resistance performance of that. Unlike the normal strength concrete, high strength concrete in sudden elevating temperature at fire is susceptible to spalling with severe explosion and surface split, due to high density of concrete. In order to endure the spalling, inner space temperature of concrete should be control less than certain point. Therefore this study investigated the influence of covering materials on high strength concrete finishing spray-on materials of fiber composite spray mortar(FCSM). Both polypropylene(PP) and polyvinyl alcohol(PVA) fiber were used in this test. Test showed that concrete, covering 18mm mortar containing PVA fiber and confining metal lath 2.3mm thickness, decreased 50% of main bar ambient temperature. compared with control concrete. In addition, concrete covering 18mm mortar without fiber caused falling of covering materials and then it was exposed in elevating temperature. As a result, spatting of the concrete occurred same as control concrete. However, concrete covering spray-on mortar containing PVA or PP fiber resisted spatting occurrence.

  • PDF

비탈형 거푸집에 의한 고강도 콘크리트의 폭렬방지 (Spalling Resistance of High Strength Concrete Using Non-Stripping Form)

  • 유지영;한창평;지석원;한민철;양성환;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.865-868
    • /
    • 2008
  • 본 연구에서는 최근 사용이 증대되고 있는 고성능 콘크리트의 폭렬현상을 방지하기 위해 일련의 연구 중 메탈라스 횡구속을 병행한 비탈형 거푸집을 사용한 고성능 콘크리트 RC기둥부재의 내화특성을 검토하였는데, 그 결과를 요약하면 다음과 같다. 유동성 및 공기량은 모두 목표 범위를 만족하였고, 압축강도는 재령 28일에서 80 MPa이상으로 고강도범위를 나타내었다. 폭렬 특성으로는 섬유를 혼입하지 않은 플레인의 경우는 심한 폭렬이 발생하였고, 나일론(이하 NY)+폴리프로필렌(이하 PP) 섬유를 0.05%를 혼입한 경우에는 표면부에만 부분적인 박리폭렬이 발생하였다. 비탈형 거푸집 변화에 따라서는 비탈형 25-20, 비탈형 50-20의 경우에는 모두 마 감재부분에 폭렬이 발생하였는데, 비탈형 50-20의 경우가 비탈형 25-20보다 양호한 폭렬방지 성능을 나타내었다. 비탈형 50-40의 경우는 폭렬이 방지되었는데 질량감소율은 10%이하로 나타났고, 온도이력은 모재표면부 최고온도가 $376.1^{\circ}C$로 가장 우수한 내화 성능을 나타내었다.

  • PDF

하중재하 영향에 의한 합성보의 화재거동에 관한 연구 (Study on the Fire Behaviour of Composite Beam with Loading and Unloading)

  • 김성배;이창남;김우철;김상섭
    • 한국화재소방학회논문지
    • /
    • 제23권2호
    • /
    • pp.27-35
    • /
    • 2009
  • 본 연구는 질석계 내화피복재를 뿜칠한 단순지지 TSC 합성보에 대해 하중 재하의 영향과 합성보의 형상, 웨브에 설치한 메탈라스의 영향 등을 변수로 내화성능 평가를 하였다. 내화피복재는 3시간 내화성능의 요구치가 40mm 이나 25mm만 뿜칠 후 내화실험을 실시하였다. 또한 강재 표면이 부착강도에 미치는 영향도 확인하였다. 실험결과 TSC 합성보에 25mm의 내화피복재를 뿜칠한 경우 재하와 비재하시험 모두 3시간의 내화성능을 확보하는 것으로 나타났다. 재하와 비재하에 대한 내화성능 기준으로 온도를 비교하면, 평균온도는 $250^{\circ}C$ 이하, 최고온도는 $310^{\circ}C$ 이하가 되었다. 또한 보의 형상 및 메탈라스의 부착 유소(昭)' 등에 의한 온도의 영향은 없었다.