• 제목/요약/키워드: metal injection molding

검색결과 168건 처리시간 0.026초

Establishment of Process of Manufacture of Ti-6Al-4V Alloy Sintering Body by MIM

  • Otsuka, A.;Suzuki, K.;Achikita, M.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.759-760
    • /
    • 2006
  • Ti-6Al-4V has low specific gravity, high corrosion resistance and superior mechanical properties but it is very difficult to control oxygen content in MIM process. It is necessary to use powders with coarse particle size to decrease oxygen content of powders, so feedstocks with poor fluidity and sintered bodies with lower density are obtained in such cases. Fine titanium hydride-dehydride powders were blended with atomized powders to accomplish higher fluidity and sintered density. Sintered bodies had higher sintered density and mechanical properties equivalent to those of wrought materials by controlling oxygen content less than 0.35mass%.

  • PDF

망막질환 치료를 위한 어플리케이터 허브와 캐뉼러 일체화 금형기술 및 접합강도 분석 (Applicator parts hub and cannula integrated mold technology and bonding strength analysis for retinal disease treatment)

  • 유정현;김용대;이정원
    • Design & Manufacturing
    • /
    • 제17권1호
    • /
    • pp.40-47
    • /
    • 2023
  • Macular degeneration and glaucoma are representative age-related retinal diseases that rank second and third in the prevalence of retinal diseases, and are a kind of degenerative neurological disease. Irreversible visual acuity and visual field damage may occur, and the number of patients is rapidly increasing as the population ages. Since this retinal disease is a chronic disease, continuous drug treatment is required. There are various drug delivery methods for treatment, but direct injection of the drug into the intravitreal is the most effective for continuous delivery of the drug over a long period of time. In order to solidify Dexamethasone, a retinal disease treatment, and insert it into the primary intravitreal, it is important to develop a technology to miniaturize the treatment and an applicator to deliver the treatment. In this study, a mold technology was developed to integrate the cannula and hub, which are one part of applicator. In addition, surface treatment was performed on the outside of the cannula to improve the bonding strength between the cannula and the hub, and the bonding strength according to each condition was analyzed through a tensile test.

  • PDF

차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화 (Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction)

  • 천두만;안성훈
    • 대한기계학회논문집A
    • /
    • 제37권2호
    • /
    • pp.199-204
    • /
    • 2013
  • 최근 차량 경량화를 통한 에너지 절감을 위해서 무거운 철강재료를 경금속이나 복합재료로 대체하는 연구가 많이 진행되고 있다. 이중, 폴리머 기반의 복합재료는 사출성형을 통해서 복잡한 형상의 제작이 가능하고, 유리섬유나 탄소섬유를 함께 사용하여 철강재료 수준으로 기계적 물성을 높일 수 있는 장점이 있다. 하지만 엔진의 고온과 우기에서의 높은 습도 환경은 폴리머의 기계적 물성을 낮추기 때문에 재료선택 과정에서 반드시 고려해야 한다. 본 연구에서는 사출성형을 통해 만들어진 유리섬유강화플라스틱을 엔진룸 내부 온도와 유사한 $85^{\circ}C$ 환경과 우기시의 최대 수분흡수 환경하에서의 기계적 물성변화를 인장시험을 통해 알아보았다. 그 결과, 고온환경에서 최대인장강도가 약 23% 감소를 보였고, 수분에 의해서는 약 30% 감소하였으며, 고온과 수분 모두에 대해서는 약 70% 감소를 확인하였으며 이는 재료 선정시 반드시 고려해야 할 영향으로 판단되었다.

폴리머코어 게이트 크기 변화가 두께 방향 수축률에 미치는 영향에 대한 연구 (A study on the effects of polymer core gate sizes on thickness shrinkage rate)

  • 최한솔;정의철;박준수;김미애;채보혜;김상윤;김용대;윤경환;이성희
    • Design & Manufacturing
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 2020
  • In this study, the variation of the shrinkage in the thickness direction of the molded parts according to the gate size of the polymer core fabricated through the 3D printer using the SLS method was studied. The polymer cores are laser sintered and the powder material is nylon base PA2200. The polymer cores have lower heat transfer rate and rigidity than the metal core due to the characteristics of the material. Therefore, the injection molding test conditions are set to minimize the deformation of the core during the injection process. The resin used in the injection molding test is a PP material. The packing condition was set to 80, 90 and 100% of the maximum injection pressure for each gate size. The runner diameter used was ∅3mm, and the gates were fabricated in semicircle shapes with cross sections 1, 2, and 3 ㎟, respectively. Thickness measurement was performed for 10 points at 2.5 mm intervals from the point 2.5 mm away from the gate, and the shrinkage to thickness was measured for each point. The shrinkage rate according to the gate size tends to decrease as the cross-sectional area decreases as the maximum injection pressure increases. The average thickness shrinkage rate was close to 0% when the packing pressure was 90% for the gate area of 1mm2. When the holding pressure was set to 100%, the shrinkage was found to decrease by 3% from the standard dimension due to the over-packing phenomenon. Therefore, the smaller the gate, the more closely the molded dimensions can be molded due to the high pressure generation. It was confirmed that precise packing process control is necessary because over-packing phenomenon may occur.

사출성형한 M3/2계 고속도공구강 분말의 탄소함량 및 소결밀도 변화 (Variations in Carbon Content and Sintered Density of M3/2 Grade High Speed Steel Powders on Metal Injection Molding Process)

  • 이광희
    • 한국분말재료학회지
    • /
    • 제4권3호
    • /
    • pp.170-178
    • /
    • 1997
  • An investigation was performed to apply the M3/2 grade high speed steel for metal injection molding using both prealloyed and elementally blended powders. The injected samples were subjected to a debinding step in $H_2/N_2$ gas atmosphere at a ratio that affected the carbon content of the material. The carbon content ranged from 1.4wt.% to 1.43wt%. with increasing $H_2$ content up to 80% $H_2$ in $H_2/N_2$ atmosphere for the prealloyed powders. The carbon contents of the elementally blended powders exhibited 1.44wt.% and 1.62wt.% at 10% $H_2/N_2$ and 20% $H_2/N_2$ gas, respectively. This level decreased to 0.17wt.% upon increasing the $H_2$ content. The sintered density of both powders increased rapidly as the temperature reached the liquid phase forming temperature. After forming the liquid phase, the density rapidly increased to the optimum sintering temperature for the prealloyed powders, whereas the density of mixed elemental powders goes up slowly to the optimum sintering temperature. The optimum sintering temperature and density are 126$0^{\circ}C$ and 97.3% for the prealloyed powders and 128$0^{\circ}C$ and 96.9% for the elementally blended powders, respectively. The microstructure of the specimen at the optimum sintering temperature consisted of fine grains with primary carbides of MC and $M_6C$ type for the prealloyed powders. The elementally blended powders exhibited coarse grains with eutectic carbides of MC, $M_2C$ and $M_6C$ type.

  • PDF

트럭 Deck Floor Board의 강도향상을 위한 목분복합재의 기계적특성 분석 (Analysis of Mechanical Properties of Wood Flours Composites to Improve the Strength of Truck Deck Floor Boards)

  • 윤성우;고선호;김홍건;곽이구
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.24-30
    • /
    • 2019
  • The deck floor of a the cargo truck becomesis damaged and aged due to the continuous loading of the loading cargo and external environmental factors. Floor boards made of wood and metal are often used. In the case of wood, the cost is high due to the use of imported wood, and the strength is easily deterioratesd due to environmental factors. In the case of metal materials, the durability is higher than that of wood, but problems are raised due to the effect of major factors that hinder the weight reduction, and the effects of corrosion. In order to replace this stucturestructural design, this study proposed a wood fiber composite using natural raw materials. Woody composites are being used as environmentally and friendly exterior materials with the combined advantages of plastic, and wood,; low cost and low density. However, due to the nature of the woody composites, the properties are differentdiffer depending on the contents of the matrix, reinforcing agent, additives, compatibilizer, etc. In this study, we investigate these problems through analysis of the microstructure and mechanical properties according to proper content and injection molding conditions. As a result, it is considered that the wood deck composite can replaced the current Deck Floor Boardreplace current deck floor boards through continuous continued research and results of this study.

플라스틱 중공부품의 일체화 성형을 위한 인몰드 펀칭 공정기술에 관한 연구 (A study on the technology of in-mold punching process for integrated hole piercing of plastic hollow parts)

  • 이성희
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.1-7
    • /
    • 2021
  • A study on in-mold punching technology for hole piercing during molding of hollow plastic parts was conducted. Considering the non-linearity of the HDPE plastic material, mechanical properties were obtained according to the change in temperature and load speed. A standard specimen for the in-mold punching test was designed to implement the in-mold punching process, and the specimen was obtained through injection molding. In order to analyze the influence of process variables during in-mold punching, an in-mold punching mold capable of controlling variables such as temperature and support pressure of the specimen was designed and manufactured. Mold heating characteristics were confirmed through finite element analysis, and punching simulations for changes in process conditions were performed to analyze punching characteristics and reflected in the experiment. Through simulations and experiments, it was found that the heating temperature, punch shape, punching speed, and pressure of the back side of the specimen were very important during in-mold punching of HDPE materials, and optimal conditions were acquired within a given range.

R/P 마스터 모델을 활용한 정밀주조 부품 및 쾌속금형 제작 공정기술의 개발 (Development of Rapid Tooling using Investment Casting & R/P Master Model)

  • 정해도;김화영
    • 한국주조공학회지
    • /
    • 제20권5호
    • /
    • pp.330-335
    • /
    • 2000
  • Functional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported. But a system which can build directly 3D parts of high performance functional material as metal park would get long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we translated the wax patterns to numerous metal tool prototypes by new investment casting process combined conventional investment casting with rapid prototyping & rapid tooling process. With this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P pare to metal part.

  • PDF

새로운 내측기어 성형용 사출성형 금형구조의 개발 (Development of a new injection mold structure for internal gears)

  • 권윤숙;제덕근;정영득
    • Design & Manufacturing
    • /
    • 제8권1호
    • /
    • pp.40-44
    • /
    • 2014
  • As a rotating machine element, plastic gears are more and more widely used in such as industrial machine element, since plastic gear is lighter, higher wear-resistance, and higher vibration absorbing ability than metal gears. When operating plastic parts, tooth breakage and fatigue life shortened due to increasing number of applying load and tooth flank temperature rising, such that accuracy of plastic gears is divided from allowable range to cause vibration and noise. On this study, a internal plastic gears are developed which improved the filling balance molding process by a new injection mold structure. The new mold structure called HR3P(hot runner type 3plate mold). As the result from this studies, we obtained a very accurate roundness internal gears by using design of experiment.

  • PDF

새로운 내측기어 성형용 사출성형 금형구조의 개발 (Development of a new injection mold structure for internal gears)

  • 권윤숙;제덕근;정영득
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.129-133
    • /
    • 2008
  • As a rotating machine element, plastic gears are more and more widely used in such as industrial machine element, since plastic gear is lighter, higher wear-resistance, and higher vibration absorbing ability than metal gears. When operating plastic parts, tooth breakage and fatigue life shortened due to increasing number of applying load and tooth flank temperature rising, such that accuracy of plastic gears is divided from allowable range to cause vibration and noise. On this study, a internal plastic gears are developed which improved the filling balance molding process by a new injection mold structure. The new mold structure called HR3P(hot runner type 3plate mold). As the result from this studies, we obtained a very accurate roundness internal gears by using design of experiment.

  • PDF