• Title/Summary/Keyword: metal forming

Search Result 1,382, Processing Time 0.025 seconds

A study of model to improve the accuracy of Springback prediction on sheet metal forming (판재 성형품의 탄성회복예측 정밀도 향상을 위한 모델 연구)

  • Kim M. C.;Lee Y. S.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.47-52
    • /
    • 2004
  • Springback comes from the release of residual stress after forming. The control of phenomenon is especially important in the sheet metal forming since there are no other practical methods available to correct the dimensional inaccuracy from springback. Therefore the accurate predication before the die machining has been a long goal in the Held of sheet metal forming. The aim of the present study is to enhance the prediction capability of finite element(FE) analysis for the springback phenomenon. For this purpose FE analysis for V-bending has been carried out with the commercial programs, LS-DYNA. The FE analysis results have been validated through the comparison of experimental. The experimental results measured directly by the strain gauge have given the confidence to FEA.

  • PDF

Development of Manufacturing Technology for Milli-Structure (Milli-Structure 생산기술개발)

  • 나경환;박훈재;조남선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1039-1042
    • /
    • 2000
  • This research will deal with Innovative manufacturing technology for milli-structure manufacturing technology which is located betweon the traditional manufacturing technology for macro-sized structure and the recently emerging manufacturing technology for micro-scaled structure such as MEMS. There are four fields in this research, which are micro-sheet metal forming technology, micro-bulk forming technology micro-molding technology and micro die making technology. As a project for new-technology in next generation, this research will be carried out through three terms and each term and be composed of three years.

  • PDF

A Study on the Prediction of Die Wear using Wear Model (마멸모델을 이용한 금형마멸 예측에 관한 연구)

  • Park, Jong-Nam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.90-96
    • /
    • 2013
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures is to develop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the wear experiments to obtain the wear coefficients and the upsetting processes was accomplished to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes was accomplished by the rigid-plastic finite element method. The result from the deformation analysis was used to analyse the die wear during the processes and the predicted die wear profiles were compared with the measured die wear profiles.

Application of Incremental Sheet Metal Forming for Automotive Body-In-White Manufacturing (점진적 성형 기술을 이용한 자동차 차체 모형 제품의 제작)

  • Lee, S.U.;Nguyen, D.T.;Kim, N.K.;Yang, S.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.279-283
    • /
    • 2011
  • Recently incremental sheet metal forming (ISF) has used widely in making prototypes and small-volume products in automotive industry etc. We apply the ISF to make a 1/4 sized automobile body-in-white. First, ISF tests for rectangular shaped cup have been performed to clarify the formability denoting the relationship between the component wall angle and maximum cup height of safe forming. Next, a CAD model for the automobile was designed and segmented into several components in order to accommodate the working space of the CNC machine we adopted and the formability of the sheet metal. Then, a CAM software was employed to generate the tool path for manufacturing wooden dies and all the small parts. Finally, the different parts were joined into a single component by laser welding after the ISF process. By using the ISF we successfully produced the 1/4 sized automobile body-in-white.

A Study on the Sheet Metal Forming and the Plastic Deformation Characteristic by Using PAM-STAMP (PAM-STAMP를 이용한 박판성형성 및 소성변형 특성에 관한 연구)

  • Kang, Dae-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.29-38
    • /
    • 1999
  • In this paper the forming simulation of circular bulge by using PAM-STAMP has been performed to estimate the sheet metal forning and the plastic deformation characteristic of circular bulge. The uniaxial tension tests adn bulge tests are carried out for studying the forming characteristics of materials, and also Moire experiment are carried out for measuring the radius of curvature of the bulge and the polar compressive thickness strain. In order to compare the simulation results with the experiment and Hills theory, the relationships between redius of curvature adn polar height of the bulge, between hydraulic pressure and polar height, and between polar compressive thickness strain and polar height, are used. According to this study, the results of simulation and Hills theory are good agreement to the experiment. So, the results of simulation by using PAM-STAMP and Hills theory will give engineers good information to assess the formagbility and plastic deformation characteristic of hydraulic circular bulge test.

  • PDF

Experimental and FE Analysis to Improve the Accuracy of Springback Prediction on Sheet Metal Forming (판재 성형품의 탄성회복예측 정밀도 향상을 위한 실험 및 해석)

  • Lee Y. S.;Kim M. C.;Kwon Y, N.;Lee J. H.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.490-496
    • /
    • 2004
  • Springback comes from the release of external loads after forming. The control of phenomenon is especially important in the sheet metal forming since there are no other practical methods available to correct the dimensional inaccuracy from springback. Therefore the accurate prediction before the die machining has been a long goal in the field of sheet metal forming. The am of the present study is to enhance the prediction capability of finite element (FE) analysis for the springback phenomenon. For this purpose FE analysis for V-bending has been carried out with the commercial programs, LS-DYNA. The FE analysis results have been validated through the comparison of experimental. The experimental results measured directly by the strain gauge have given the confidence to FEA.

Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity (결정 소성학을 이용한 반구 박판 성형공정 전산모사)

  • Shim, J.G.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.282-284
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By observing the texture evolution of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between crystal plasticity and experiment shows the verification of the crystal-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

  • PDF

Comparative Study of Applicability of Aluminum, Magnesium and Copper Alloy Sheets using Flexibly-reconfigurable Roll Forming (알루미늄, 마그네슘과 구리합금의 비정형롤판재성형 공정 적용성 비교에 관한 연구)

  • Kil, M.G.;Yoon, J.S.;Park, J.W.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.168-173
    • /
    • 2017
  • A new sheet metal forming process, called flexibly reconfigurable roll forming (FRRF), is expected to resolve the economical limitation of the existing 3D curved sheet metal forming processes. The height-controllable guides and a couple of flexible rollers are utilized as the forming tool. Recently, as the 3D curved sheet metal is increasingly demanded in various fields, the application of FRRF to diverse materials is necessary. In addition, the formability comparison of several materials is needed. Therefore, in this study, we investigated the applicability of FRRF for different materials such as aluminum, magnesium, and copper alloys, and also the formability of these materials was compared using FRRF. The numerical simulation was conducted using ABAQUS, the commercial software, and the experiments were carried out using an FRRF apparatus to validate the simulation results. Finally, the applicability of FRRF for the chosen materials and the formability of these materials on FRRF process were confirmed by comparing the simulation and experimental results.

The Prediction of Interfacial Heat Transfer Coefficient According to Contact Time and Pressure in Forging and Casting Die Materials for the Hot Press Forming (핫프레스포밍용 주조, 단조 금형에 대한 시간과 압력에 따른 대류열전달계수의 예측)

  • Kim, N.H.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.378-386
    • /
    • 2010
  • Nowadays there has been great interest in using heat treated cast material for press dies due to several advantages like reduction in die production costs. However, in hot press forming processes H13 forged tool steel is mostly used. Cooling performance of dies in hot press forming processes is considered as an important factor of study and also the IHTC parameter between cast material die and sheet metal should be considered as an essential. In the present study, the IHTC was calculated for the sheet metal in the hot press forming process with cast and forged material dies. The temperature measurements were performed for the sheet metal, casting and forged material dies by applying various contact pressure in hot press forming. IHTC was calculated and studied by adopting the inverse heat convection method in DEFORM-2D. Each IHTC was considered as a function of contact time and contact pressure. The experimental data were compared with calculated data obtained from the proposed equation and references.

A study on the fiber orientation and mechanical characteristics of injection molded fiber-reinforced plastic for the rigidity improvement of automotive parts (자동차 부품의 강성 보강을 위한 섬유강화 플라스틱 사출성형품의 섬유 배향 및 기계적 특성에 관한 연구)

  • Eui-Chul Jeong;Yong-Dae Kim;Jeong-Won Lee;Seok-Kwan Hong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.24-33
    • /
    • 2022
  • Fiber-reinforced plastics(FRPs) have excellent specific stiffness and strength, so they are usually used as automotive parts that require high rigidity and lightweight instead of metal. However, it is difficult to predict the mechanical properties of injection molded parts due to the fiber orientation and breakage of FRPs. In this paper, the fiber orientation characteristics and mechanical properties of injection molded specimens were evaluated in order to fabricate automotive transmission side covers with FRPs and design a rib structure for improvement of their rigidity. The test molds were designed and manufactured to confirm the fiber orientation characteristics of each position of the injection molded standard plate-shaped specimens, and the tensile properties of the specimens were evaluated according to the injection molding conditions and directions of specimens. A gusset-rib structure was designed to improve the additional structural rigidity of the target products, and a proper rib structure was selected through the flexural tests of the rib-structured specimens. Based on the evaluation of fiber orientation and mechanical characteristics, the optimization analyses of gate location were performed to minimize the warpage of target products. Also, the deformation analyses against the internal pressure of target product were performed to confirm the rigidity improvement by gusset-rib structure. As a result, it could be confirmed that the deformation was reduced by 27~37% compared to the previous model, when the gusset-rib structure was applied to the joining part of the target products.