• Title/Summary/Keyword: metal electrode

Search Result 1,303, Processing Time 0.028 seconds

Development of Alkali Metal Thermal-to-Electric Converter Unit Cells Using Mo/TiN Electrode

  • Seog, Seung-won;Choi, Hyun-Jong;Kim, Sun-Dong;Lee, Wook-Hyun;Woo, Sang-Kuk;Han, Moon-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.200-204
    • /
    • 2017
  • Molybdenum (Mo), an electrode material of alkali metal thermal-to-electric converters (AMTEC), facilitates grain growth behavior and forms Mo-Na-O compounds at high operating temperatures, resulting in reduced performance and shortened lifetime of the cell. Mo/TiN composite materials have been developed to provide a solution for such issues. Mo is a metal that possesses excellent electrical properties, and TiN is a ceramic compound with high-temperature durability and catalytic activity. In this study, a dip-coating process with an organic solvent-based slurry was used as an optimal coating method to achieve homogeneity and stability of the electrodes. Cell performance was evaluated under various conditions such as the number of coatings, ranging from 1 to 3 times, and heat treatment temperatures of $800-1100^{\circ}C$. The results confirmed that the cell yielded a maximum power of 9.99 W for the sample coated 3 times and heat-treated at $900^{\circ}C$.

Voltammetric Determination of Copper(II) at Chemically Modified Carbon Paste Electrodes Containing Alga

  • Bae, Zun-Ung;Kim, Young-Lark;Chang, Hye-Young
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.611-615
    • /
    • 1995
  • The design of appropriate chemically modified electrodes should allow development of new voltammetric measurement schemes with enhanced selectivity and sensitivity. Microorganism like algae has high ability to trap toxic and heavy metal ions and different affinities for metal ions. A copper(II) ion-selective carbon paste electrode was constructed by incorporating alga Anabaena into a conventional carbon paste mixture, and then the film of 10% Nafion was coated to avoid the swelling of the electrode surface. Copper ion could be deposited at the 25% algamodified electrode for 15 min without the applied potential while stirring the solution by only immersing the electrode in a buffer (pH 4.0) cot1taining copper(II). Temperature was controlled at $35^{\circ}C$. After preconcentration was carried out the electrode was transferred to a 0.1 M potassium chloride solution and was reduced at -0.6 volt at $25^{\circ}C$. The differential pulse anodic stripping voltammetry was employed. A well-defined oxidation peak could be obtained at -0.1 volt (vs SCE). In five deposition / measurement / regeneration cycles, the responses were reproducible and relative standard deviations were 3.3% for $8.0{\times}10^{-4}M$ copper(II). Calibration curve for copper was linear over the range from $2.0{\times}10^{-4}M$ to $1.0{\times}10^{-3}M$. The detection limit was $7.5{\times}10^{-5}M$. Studies of the effect of diverse ions showed that the coexisting metal ions had little or no effect for the determination of copper. But anions such as cyanide. oxalate and EDTA seriously interfered.

  • PDF

Electric Resistance Double Spot Welding Process of Dissimilar Metal Plates of Steel and Aluminum by Using Heating Dies (가열금형을 사용하는 강철과 알루미늄 이종금속판재의 전기저항 이중스폿용접)

  • Kim, T.H.;Sun, Xiaoguang;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.37-47
    • /
    • 2018
  • In this paper, a double spot welding process, utilizing electric resistance heating dies, is suggested for the spot welding of dissimilar metal plates for drawing and concurrent spot welding. This double welding process has two heating methods for the fusion welding at the interfacial zone between steel and aluminum plates, such as heating method by thermal conduction of electric resistance by welding current induced to heating dies, and heating method by electric resistance between contacted surfaces of two plates by welding current induced to copper electrode. This double welding process has welding variables such as each current induced in heating dies and in copper electrode, outer diameters of heating dies, and edge shape of copper electrode. Experiments for current conditions in welding process should be demanded in order to get successful welding strength. It was known that the welding strength could be reached to the value demanded on industry fields under such welding conditions as heating dies of outer ring dia.12mm contacted on steel plate, as heating dies of outer ring dia. 14mm contacted on aluminum plate, and as copper electrode of dia. 6.0mm, and as 3 times continuous heating method by $1^{st}$ current of 11 kA(9cycle), $2^{nd}$ current 11 kA(60cycle), $3^{rd}$ current 7 kA(60cycle) applied in steel heating dies and copper electrodes, flat edge of copper electrode, for double spot welding process of dissimilar metal plates of steel and aluminum of 1.0 mm thickness.

Electrical Conduction in Y2O3-doped SrZrO3-metal Electrode System (Y2O3가 도핑된 SrZrO3-금속전극계의 전기전도 특성)

  • Baek, Hyun-Deok;Lee, Poong-Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.367-376
    • /
    • 2002
  • Electrical conduction in $SrZr_{1-x}Y_xO_{3-\delta}$((x=0.05, 0.10)-metal electrode system was investigated by impedance spectroscopy and two-probe d.c. conductivity measurement. Electrode conductivity in anodic direction varies with $P_W^{1/2}$( and that in cathodic direction with $P_{O2}^{1/4}$ in oxidizing atmosphere. In hydrogen atmosphere, the addition of water vapor increased the electrode conductivity both in anodic and cathodic direction. Increasing dopant concentration from 5 to 10% showed a more than four times increase in anodic conduction as well as bulk conduction of the solid electrolyte. This observation implies that unfilled oxygen vacancy concentration increases rapidly as the dopant content increases in humid atmosphere. The activation energy of cathodic conduction in Pt and Ag electrode was nearly same below $800^{\circ}C$ which means the rate of cathodic reaction is determined by the reaction in the electrolyte surface rather than on the metal electrodes.

A Mathematical Model for the Discharge Mechanism of a Metal Hydride Electrode (금속수소 전극의 방전기구에 대한 수학적 모델)

  • Shin, Chee Burm;Hong, Jung Ho;Yun, Kyung Suk;Cho, Byung Won;Cho, Won Il;Jeon, Gui
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.768-773
    • /
    • 1998
  • A mathematical model of discharge mechanism of metal-hydride (MH) electrode was presented. A computer simulation program was developed in order to predict the variation of electrode potential and the distribution of hydrogen concentration within MH particles during discharge. By investigating the effects of the discharge current density, the size of MH particle, the diffusivity of hydrogen in MH particle, and the porosity of the electrode, it was found that these factors exerted a collective effect on the discharge characteristic of the electrode and the utilization of hydrogen in the MH particle. It was confirmed that and optimization of design factors of an MH electrode is necessary in order to execute a high-rate discharge and to improve the utilization of hydrogen in MH particle.

  • PDF

Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells (리튬 이차전지용 전극 및 연료전지 촉매 소재 연구 개발 동향)

  • Yun, Hongkwan;Kim, Dahee;Kim, Chunjoong;Kim, Young-Jin;Min, Ji Ho;Jung, Namgee
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.388-405
    • /
    • 2018
  • In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.

A study on the electrical switching properties of oxide metal (산화금속의 전기적 스위칭 특성 연구)

  • Choi, Sung-Jai;Lee, Won-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.173-178
    • /
    • 2009
  • We have investigated the electrical properties of oxide metal thin film device. The device has been fabricated top-top electrode structure and its transport properties are measured in order to study the resistance change. Electrical properties with linear voltage sweep on a electrodes are used to show the variation of resistance of oxide metal thin film device. Fabricated oxide metal thin film device with MIM structure is changed from a low conductive Off-state to a high conductive On-state by the external linear voltage sweep. The $Si/SiO_2/MgO$ device is switched from a high resistance state to a low resistance state by forming. Consequently, we believe oxide metal is a promising material for a next-generation nonvolatile memory and other electrical applications.

  • PDF

Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices (유연전자소자를 위한 차세대 유연 투명전극의 개발 동향)

  • Kim, Joo-Hyun;Chon, Min-Woo;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.1-11
    • /
    • 2014
  • Flexible transparent conductive electrodes (TCEs) have recently attracted a great deal of attention owing to rapid advances in flexible electronic devices, such as flexible displays, flexible photovoltanics, and e-papers. As the performance and reliability of flexible electronics are critically affected by the quality of TCE films, it is imperative to develop TCE films with low resistivity and high transparency as well as high flexibility. Indium tin oxide (ITO) has been the most dominant transparent conducting material due to its high optical transparency and electrical conductivity. However, ITO is susceptible to cracking and delamination when it is bent or deformed. Therefore, various types of flexible TCEs, such as carbon nanotube, conducting polymers, graphene, metal mesh, Ag nanowires (NWs), and metal mesh have been extensively investigated. Among several options to replace ITO film, Ag NWs and metal mesh have been suggested as the promising candidate for flexible TCEs. In this paper, we focused on Ag NWs and metal mesh, and summarized the current development status of Ag NWs and metal mesh. The several critical issues such as high contact resistance and haze are discussed, and newly developed technologies to resolve these issues are also presented. In particular, the flexibility and durability of Ag NWs and metal mesh was compared with ITO electrode.

Research of Electrochemical Properties with Metal Sulfide Electrode for Lithium Batteries (리튬전지용 금속황화물 전극의 전기화학적 특성에 관한 연구)

  • RYU, HO SUK;KIM, IN SOO
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.138-143
    • /
    • 2020
  • Metal sulfides are good candidates for cathode materials. Especially, iron sulfides and nickel sulfides have been demonstrated to be potential electrode materials among metal sulfides due to nontoxicity and high theoretical specific capacities. Electrochemical properties (capacity, cycle life, stability etc.) of Li/iron sulfides or nickel sulfides cell were improved by methode such as coating, doping of material, and nanoization of materials etc.

Influence of the Electrical Conductivity of Dielectric on WEDM of Sintered Carbide

  • Kim, Chang-Ho;Kruth, Jean-Pierre
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1676-1682
    • /
    • 2001
  • This work deals with the electrical conductivity of dielectric and cobalts percentage on output parameters such as metal removal rate and surface roughness value of sintered carbides cut by wire-electrical discharge machining (WEDM). To obtain a precise workpiece with good quality, some extra repetitive finish cuts along the rough cutting contour are necessary, Experimental results show that increases of cobalt amount in carbides affects the metal removal rate and worsens the surface quality as a greater quantity of solidified metal deposits on the eroded surface. Lower electrical conductivity of the dielectric results in a higher metal removal rare as the gap between wire electrode and workpiece reduced. Especially, the surface characteristics of rough-cut workpiece and wire electrode were analyzed too. To obtain a good surface equality without crack, 4 finish-cuts were necessary reducing fille electrical energy and the offset value.

  • PDF