• Title/Summary/Keyword: metal doping

Search Result 315, Processing Time 0.025 seconds

Synthesis of Tialite Ceramic Pigments and Coloring in Glazes (Tialite계 세라믹 안료의 합성 및 유약에서의 발색)

  • Kim, Yeon-Ju;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.450-455
    • /
    • 2011
  • [ $Al_2TiO_5$ ]has a high refractive index and good solubility of the chromophore in the $Al_2TiO_5$ lattice, which allows this structure to be a good candidate for the development of new ceramic pigments. However, pure $Al_2TiO_5$ is well known to decompose on firing at $900{\sim}1100^{\circ}C$. However, this process can be inhibited by the incorporation of certain metal cations into its crystalline lattice. In this study, the synthesis of gray ceramic pigment was performed by doping cobalt on the $Al_2TiO_5$ crystal structure. The $Al_2TiO_5$ was synthesized using $Al_2O_3$ and $TiO_2$, and doped with $Co_3O_4$ as a chromophore material. In order to prevent the thermal decomposition during the cooling procedure, MgO was added to samples by 0.05 mole, 0.1 mole, and 0.15 mole as a stabilizer. The samples were fired at $1500^{\circ}C$ for 2 hours and cooled naturally. The crystal structure, solubility limit, and color of the synthesized pigment were analyzed using XRD, Raman spectroscopy, UV, and UV-vis. $Al_2O_3$ was available for the formation of $CoAl_2O_4$, which should also be considered in order to explain the small amount of this phase detected in the sample with the higher $Co^{2+}$ content (${\geq}$ 0.03 mole). It was found that the solubility limit of $Co^{2+}$ in the $Al_2TiO_5$ crystal was 0.02 mole% through an analysis of Raman spectroscopy. Through the addition of a pigment with 0.02 mole% of $Co^{2+}$ to lime-barium glaze, stabilized gray color pigments with 66.54, -2.35, and 4.68 as CIE-$L^*a^*b^*$ were synthesized.

Inorganic Printable Materials for Thin-Film Transistors: Conductor and Semiconductor

  • Jeong, Sun-Ho;Song, Hae-Chon;Lee, Byung-Seok;Lee, Ji-Yoon;Choi, Young-Min;Ryu, Beyong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.18.2-18.2
    • /
    • 2010
  • For the past a few years, we have intensively researched the printable inorganic conductors and ZnO-based amorphous oxide semiconductors (AOSs) for thin-film transistors. For printable conductor materials, we have focused on the aqueous Ag and Cu ink which possess a variety of advantages, comparing with the conventional metal inks based on organic solvent system. The aqueous Ag ink was designed to achieve the long-term dispersion stability using a specific polymer which can act as a dispersant and capping agent, and the aqueous Cu ink was carefully formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. For printable ZnO-based AOSs, we have researched the noble way to resolve the critical problem, a high processing-temperature above $400^{\circ}C$, and recently discovered that Ga doping in ZnO-based AOSs promotes the formation of oxide lattice structures with oxygen vacancies at low annealing-temperatures, which is essential for acceptable thin-film transistor performance. The mobility dependence on annealing temperature and AOS composition was analyzed, and the chemical role of Ga are clarified, as are requirements for solution-processed, low-temperature annealed AOSs.

  • PDF

Effects of Al-doping on IZO Thin Film for Transparent TFT

  • Bang, J.H.;Jung, J.H.;Song, P.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.207-207
    • /
    • 2011
  • Amorphous transparent oxide semiconductors (a-TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). Recently, Nomura et al. demonstrated high performance amorphous IGZO (In-Ga-Zn-O) TFTs.1 Despite the amorphous structure, due to the conduction band minimum (CBM) that made of spherically extended s-orbitals of the constituent metals, an a-IGZO TFT shows high mobility.2,3 But IGZO films contain high cost rare metals. Therefore, we need to investigate the alternatives. Because Aluminum has a high bond enthalpy with oxygen atom and Alumina has a high lattice energy, we try to replace Gallium with Aluminum that is high reserve low cost material. In this study, we focused on the electrical properties of IZO:Al thin films as a channel layer of TFTs. IZO:Al were deposited on unheated non-alkali glass substrates (5 cm ${\times}$ 5 cm) by magnetron co-sputtering system with two cathodes equipped with IZO target and Al target, respectively. The sintered ceramic IZO disc (3 inch ${\phi}$, 5 mm t) and metal Al target (3 inch ${\phi}$, 5 mm t) are used for deposition. The O2 gas was used as the reactive gas to control carrier concentration and mobility. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of IZO:Al thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF

Preparation of WO3-TiO2 Photocatalyst and Evaluation of Its Photo-activity in the Visible Light Range (가시광 활성 WO3-TiO2 복합체 광촉매의 제조 및 이의 특성 평가)

  • Yeo, In-Chul;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.474-478
    • /
    • 2013
  • The most general photocatalyst, $TiO_2$ and $WO_3$, are acknowledged to be ineffective in range of visible light. Therefore, many efforts have been directed at improving their activity such as: band-gap narrowing with non-metal element doping and making composites with high specific surface area to effectively separate electrons and holes. In this paper, the method was introduced to prepare a photo-active catalyst to visible irradiation by making a mixture with $TiO_2$ and $WO_3$. In the $TiO_2-WO_3$ composite, $WO_3$ absorbs visible light creating excited electrons and holes while some of the excited electrons move to $TiO_2$ and the holes remain in $WO_3$. This charge separation reduces electron-hole recombination resulting in an enhancement of photocatalytic activity. Added Ag plays the role of electron acceptor, retarding the recombination rate of excited electrons and holes. In making a mixture of $TiO_2-WO_3$ composite, the mixing route affects the photocatalytic activity. The planetary ball-mill method is more effective than magnetic stirring route, owing to a more effective dispersion of aggregated powders. The volume ratio of $TiO_2(4)$ and $WO_3(6)$ shows the most effective photocatalytic activity in the range of visible light in the view point of effective separation of electrons and holes.

Stabilization of Nickel-Rich Layered Cathode Materials of High Energy Density by Ca Doping (칼슘 도핑을 통한 고 에너지 밀도를 가지는 Ni-rich 층상 구조형 양극 소재의 안정화)

  • Kang, Beomhee;Hong, Soonhyun;Yoon, Hongkwan;Kim, Dojin;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.273-278
    • /
    • 2018
  • Lithium-ion batteries have been considered the most important devices to power mobile or small-sized devices due to their high energy density. $LixCoO_2$ has been studied as a cathode material for the Li-ion battery. However, the limitation of its capacity impedes the development of high capacity cathode materials with Ni, Mn, etc. in them. The substitution of Mn and Ni for Co leads to the formation of solid solution phase $LiNi_xMn_yCo_{1-x-y}O_2$ (NMC, both x and y < 1), which shows better battery performance than unsubstituted $LiCoO_2$. However, despite a high discharge capacity in the Ni-rich compound (Ni > 0.8 in the metal site), poor cycle retention capability still remains to be overcome. In this study, aiming to improve the stability of the physical and chemical bonding, we investigate the stabilization effect of Ca in the Ni-rich layered compound $Li(Ni_{0.83}Co_{0.12}Mn_{0.05})O_2$, and then Ca is added to the modified secondary particles to lower the degree of cationic mixing of the final particles. For the optimization of the final grains added with Ca, the Ca content (x = 0, 2.5, 5.0, 10.0 at.%) versus Li is analyzed.

Improvement of solar cell efficiency using selective emitter (Selective emitter를 이용한 태양전지 효율 향상)

  • Hong, Kuen-Kee;Cho, Kyeong-Yeon;Seo, Jae-Keun;Oh, Dong-Joon;Shim, Ji-Myung;Lee, Hyun-Woo;Kim, Ji-Sun;Shin, Jeong-Eun;Kim, Ji-Su;Lee, Eun-Joo;Lee, Soo-Hong;Lee, Hae-Seok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.56-59
    • /
    • 2011
  • The process conditions for high efficiency industrial crystalline Si solar cells with selective emitter were optimized. In the screen printed solar cells, the sheet resistance must be 50-60V/sq. because of metal contact resistance. But the low sheet resistance causes the increase of the recombination and blue response at the short wavelength. Therefore, the screen printed solar cells with homogeneous emitter have limitations of efficiency, and this means that the selective emitter must be used to improve cell efficiency. This work demonstrates the feasibility of a commercially available selective emitter process, based on screen printing and conventional diffusion process. Now, we improved cell efficiency from 18.29% to18.45% by transition of heavy emitter pattern and shallow emitter doping condition.

  • PDF

Photoconductivity in Mg-doped p-type GaN by MBE

  • ;;;;;Yuldashev
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.120-120
    • /
    • 1999
  • III-nitride계 물질들은 blue와 UV 영역의 LED, LD와 같은 광소자뿐만 아니라 HBT, FET와 같은 전자소자로도 널리 응용되고 있다. 이와 같은 물질을 이용한 소자를 제작할 수 있는 낮은 저항의 ohmic contact은 필수적이다. Al이나 Ti와 같은 물질을 기초로 한 n-GaN의 경우는 이미 많은 연구결과가 발표되어 전기적 광학적 소자를 동작하는데 충분히 낮은 ohmic contact저항( )을 었다. 그러나 p-GaN의 ohmic contact은 아직까지 많은 문제점을 내포하고 있다. 그 중의 하나는 높은 doping 농도( )의 p-GaN 박막을 성장하기가 어렵다는 것이며, 또 하나는 낮은 접촉 비저항을 얻기 위해선 7.5eV이상의 큰 재가 function을 지닌 금속을 선택해야 한다. 그러나 5.5eV 이상의 재가 function을 갖는 금속은 존재하지 않는다. 위와 같은 문제점들은 p-GaN의 접촉 비저항이 이상의 높은 값을 갖게 만들고 있으며, 이에 대한 해경방안으로는 고온의 열처리를 통하여 p-GaN와 금속 사이에서 화학적 반응을 일으킴으로써 표면 근처에서 캐리어농도를 증가시키고, 캐리어 수송의 형태가 tunneling 형태로 일어날 수 있도록 하는 tunneling current mechanism을 이용하는 것이다. 이로 인해 결국 낮은 접촉 비저항을 얻을 수 있게되며, 일반적으로 p-GaN에서는 Nidl 좋은 물질로 알려져 있다. 그러나 Ni은 50$0^{\circ}C$이상의 열처리에서 쉽게 산화되는 특성 때문에 높은 캐리어를 얻는데 어려운 문제점이 있다. 이에 본 연구에서는 MBE로 성장된 p-GaN박막을 Mg의 activation을 더욱 증가시키기 위해 N2 분위기에서 15분간 90$0^{\circ}C$에서 annealing을 하였으며, ohmic 접촉을 위한 금속으로 높은 재가 function과 좋은 adhesion 그리고 낮은 자체저항을 가지고 있는 Ni/Au를 ohmic metal로 하여 contact한 후에 90$0^{\circ}C$에서 10초간 rapid thermal annealing (RTA)처리를 했다. 성장된 박막의 광학적 성질은 PL로써 측정하였으며, photoconductivity 실험을 통해 impurity의 life time을 분석하였고, persistent photoconductivity를 통해 dark current를 측정하였다. 또한 contact resistance를 계산하기 위해 circular-TLM method을 이용하여 I-V 특성을 조사하였다.

  • PDF

High Performance ESD/Surge Protection Capability of Bidirectional Flip Chip Transient Voltage Suppression Diodes

  • Pharkphoumy, Sakhone;Khurelbaatar, Zagarzusem;Janardhanam, Valliedu;Choi, Chel-Jong;Shim, Kyu-Hwan;Daoheung, Daoheung;Bouangeun, Bouangeun;Choi, Sang-Sik;Cho, Deok-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.196-200
    • /
    • 2016
  • We have developed new electrostatic discharge (ESD) protection devices with, bidirectional flip chip transient voltage suppression. The devices differ in their epitaxial (epi) layers, which were grown by reduced pressure chemical vapor deposition (RPCVD). Their ESD properties were characterized using current-voltage (I-V), capacitance-voltage (C-V) measurement, and ESD analysis, including IEC61000-4-2, surge, and transmission line pulse (TLP) methods. Two BD-FCTVS diodes consisting of either a thick (12 μm) or thin (6 μm), n-Si epi layer showed the same reverse voltage of 8 V, very small reverse current level, and symmetric I-V and C-V curves. The damage found near the corner of the metal pads indicates that the size and shape of the radius governs their failure modes. The BD-FCTVS device made with a thin n- epi layer showed better performance than that made with a thick one in terms of enhancement of the features of ESD robustness, reliability, and protection capability. Therefore, this works confirms that the optimization of device parameters in conjunction with the doping concentration and thickness of epi layers be used to achieve high performance ESD properties.

Ohmic Contact Characteristics of p-InGaAs with Near-Noble Transition Metals of Pt and Pd (준귀금속 전이원소, Pt, Pd를 이용한 p-InGaAs의 오믹 접촉저항 특성 연구)

  • Park, Young-San;Ryu, Sang-Wan;Yu, Jun-Sang;Kim, Hyo-Jin;Kim, Sun-Hun;Kim, Jin-Hyeok
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.629-632
    • /
    • 2006
  • Electrical characteristics of Pt/Ti/Pt/Au and Pd/Zn/Pd/Au contacts to p-type InGaAs grown on an InP substrate have been characterized as a function of the doping concentration and the annealing temperature. The Pt/Ti/Pt/Au contacts produced the specific contact resistance as low as $2.3{\times}10^{-6}{\Omega}{\cdot}cm^2$, when heat-treated at an annealing temperature of $400^{\circ}C$. Comparison of the Pt/Ti/Pt/Au and Ti/Pt/Au contacts showed that the first Pt layer plays an important role in reducing the contact resistivity probably by lowering energy barrier at the metal-semiconductor interface. For the Pd/Zn/Pd/Au contacts, the contact resistivity remained virtually unchanged with increasing annealing temperature. The specific contact resistivity as low as $4.7{\times}10^{-6}{\Omega}{\cdot}cm^2$ was obtained. The results indicate that the Pt/Ti/Pt/Au and Pd/Zn/Pd/Au schemes could be potentially important for the fabrication of InP-based optoelectronic devices, such as photodetector and optical modulator.

Electrical Transport Properties and Magnetoresistance of (1-x)La0.7Sr0.3MnO3/xZnFe2O4 Composites

  • Seo, Yong-Jun;Kim, Geun-Woo;Sung, Chang-Hoon;Lee, Chan-Gyu;Koo, Bon-Heun
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.137-141
    • /
    • 2010
  • The $(1-x)La_{0.7}Sr_{0.3}MnO_3(LSMO)/xZnFe_2O_4$(ZFO) (x = 0, 0.01, 0.03, 0.06 and 0.09) composites were prepared by a conventional solid-state reaction method. We investigated the structural properties, magnetic properties and electrical transport properties of (1-x)LSMO/xZFO composites using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-cooled dc magnetization and magnetoresistance (MR) measurements. The XRD and SEM results indicate that LSMO and ZFO coexist in the composites and the ZFO mostly segregates at the grain boundaries of LSMO, which agreed well with the results of the magnetic measurements. The resistivity of the samples increased by the increase of the ZFO doping level. A clear metal-to-insulator (M-I) transition was observed at 360K in pure LSMO. The introduction of ZFO further downshifted the transition temperature (350K-160K) while the transition disappeared in the sample (x = 0.09) and it presented insulating/semiconducting behavior in the measured temperature range (100K to 400K). The MR was measured in the presence of the 10kOe field. Compared with pure LSMO, the enhancement of low-field magnetoresistance (LFMR) was observed in the composites. It was clearly observed that the magnetoresistance effect of x = 0.03 was enhanced at room temperature range. These phenomena can be explained using the double-exchange (DE) mechanism, the grain boundary effect and the intrinsic transport properties together.