• Title/Summary/Keyword: metal deposition

Search Result 1,622, Processing Time 0.03 seconds

Investigation on HT-AlN Nucleation Layers and AlGaN Epifilms Inserting LT-AlN Nucleation Layer on C-Plane Sapphire Substrate

  • Wang, Dang-Hui;Xu, Tian-Han
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.125-129
    • /
    • 2016
  • In this study, we have investigated a high-temperature AlN nucleation layer and AlGaN epilayers on c-plane sapphire substrate by low-pressure metal-organic chemical vapor deposition (LP-MOCVD). High resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), scanning electron microscope (SEM) and Raman scattering measurements have been exploited to study the crystal quality, surface morphology, and residual strain of the HT-AlN nucleation layer. These analyses reveal that the insertion of an LT-AlN nucleation layer can improve the crystal quality, smooth the surface morphology of the HT-AlN nucleation layer and further reduce the threading dislocation density of AlGaN epifilms. The mechanism of inserting an LT-AlN nucleation layer to enhance the optical properties of HT-AlN nucleation layer and AlGaN epifilm are discussed from the viewpoint of driving force of reaction in this paper.

Rapid Product Fabrication using Wire Welding with $CO_2$ Laser Irradiation and Milling Process Technology (레이저 용접공정과 밀링공정에 의한 쾌속 금속 시작품 제작)

  • 최두선;신보성;윤경구;황경현;박진용;이종현;송용억;박세형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.763-766
    • /
    • 2000
  • The Rapid Prototyping and Tooling technology has been developed. However, most commercial ones currently use resins or waxes as the raw materials. These days. the direct metal deposition methods are researched as a true rapid prototyping and tooling technology. A fundamental study on rapid prototyping and tooling with wire welding technology using $CO_2$ laser radiation was carried out in this paper. The main focus is to develop a simple commercial rapid prototyping and tooling system with the exiting laser welding technology. The process is investigated as a function of laser parameters and process variables. Basic parts were fabricated as out-put and their microstructure, hardness and tensile strength are examined for the reliability. In addition, Its advantages and disadvantages are discussed as a rapid prototyping and tooling system.

  • PDF

A Study of Properties of GaN grown using In-situ SiN Mask by MOCVD (In-situ SiN 박막을 이용하여 성장한 GaN 박막의 특성 연구)

  • Kim, Deok-Kyu;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.582-586
    • /
    • 2005
  • We have grown GaN layers with in-situ SiN mask by metal organic chemical vapor deposition (MOCVD) and study the physical properties of the GaN layer. We have also investigate the effect of the SiN mask on its optical property. By inserting a SiN mask, (102) the full width at half maximum (FWHM) decreased from 480 arcsec to 409 arcsec and threading dislocation (TD) density decreased from $3.21\times10^9\;cm^{-2}\;to\;9.7\times10^8\;cm^{-2}$. The PL intensity of GaN with SiN mask improved 2 times to that without SiN mask. We have thus shown that the SiN mask improved significantly the physical and optical properties of the GaN layer.

MATERIAL AND ELECTICAL CHARACTERISTICS OF COPPER FILMS DEPOSITED BY MATAL-ORGANIC CHEMICAL TECHNIQUE

  • Cho, Nam-Ihn;Park, Dong-Il;Nam, H. Gin
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.803-808
    • /
    • 1996
  • Material and electrical characteristies of copper thin films prepared by metal organic chemical vapor deposition (MOCVD) have been investigated for interconnection applications in ultra large scale integration circuits (ULSI). The copper films have been deposited a TiN substrates using a metal organic precursor, hexafluoro acetylacetonate trimethyvinylsilane copper, VTMS(hfac)Cu (I). Deposition rate, grain size, surface morphology, and electrical resistvity of the copper films have been measuredfrom samples prepared at various experimental conditions, which include substrate temperature, chamber pressure, and carrier gas flow rate. Results of the experiment showed that the electrical property of the copper films is closely related to the crystallinity of the films. Lowest electrical resistivity, $2.4{\mu}{\Omega}.cm$ was obtained at the substrate temperature of $180^{\circ}C$, but the resistivity slightly increased with increasing substrate temperature due to the carbon content along the copper grain boundaries.

  • PDF

Preparation for Mn-Zn Ferrite Soft Magnetic Underlayer Perpendicular Magnetic Recording Disk using Mn-Zn-Fe-O Metal Target (Mn-Zn-Fe-O 금속타깃을 이용한 수직자기기록디스크의 하지연자성층용 Mn-Zn ferrite 박막제작)

  • Kong, Sok-Hyun;Kim, Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.883-887
    • /
    • 2006
  • In order to attain high-rate deposition of Mn-Zn ferrite thin film for soft magnetic underlayer in perpendicular magnetic recording media, a reactive sputtering using powder-metal targets under the mixture gas of Ar and $O_{2}$ was performed. It was succeeded that Mn-Zn ferrite films with (111) crystal orientation were deposited on Pt(111) underlayer without any annealing process. The film revealed 3.4 kG of 4 ${\pi}Ms$, 70 Oe of coercivity. The deposition rate of the new method was 16 times as high as that of the conventional method using ferrite target.

Preparation and Electrical Properties of $SrTiO_3$ Thin Films by Plasma Enhanced Metal Organic Chemical vapor Deposition (PE-MOCVD에 의한 $SrTiO_3$ 박막의 제조 및 전기적 특성에 관한 평가)

  • 김남경;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.177-182
    • /
    • 1996
  • strontium titanate (SrTiO3) thin films deposited on Pt/MgO were prepared by Plasma Enhanced Metal Orgainc Chemical vapor Deposition (Pe-MOCVD). The crystallinity of SrTiO3 thin films increased with increasing depo-sition temperature and SrF2 second phase disappeared at 55$0^{\circ}C$ The films showed a dielectric constant of 177 and a dissipation factor of 0.0195 at 100 kHz. The variation of capacitance of the films with applied voltage was small showing paraelectric properties. The charge storage density and leakage current density were 40fC/${\mu}{\textrm}{m}$2 and 3.49$\times$10-7 A/cm2 at 0.25 MV/cm, respectively.

  • PDF

Characterization of $RuO_2$ Thin Films by Hot-wall Metal Organic Chemical Vapor Deposition (Hot-wall MOCVD에 의한 $RuO_2$ 박막의 특성)

  • 신웅철;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.969-976
    • /
    • 1996
  • RuO2 thin films were deposited on SiO2(1000 $\AA$)/Si by hot-wall Metal Organic Chemical Vapor Depositon. The crystallinity of RuO2 thin films increased with increasing deposition temperature and the preferred orienta-tion of RuO2 films converted (200) plane to (101) plane with increasing film thicknesses. Such a change in preferred orientation was influenced on the crystallographic structure and the residual stress of RuO2 thin films. The resistivity of the 2700$\AA$-thick RuO2 thin films deposted at 30$0^{\circ}C$ was 52.7$\mu$$\Omega$-cm and they could be applicable to bottom electrodes of high dielectric materials. However the resistivity of RuO2 thin films increased with decreasing film thicknesses. The grain size and the resistivity of RuO2 thin films were densified with increasing the annealing temperature and showed the decrease of resistivity.

  • PDF

Direct Liquid Injection Metal Organic Chemical Vapor Deposition of $HfO_2$ Thin Films Using $Hf(dimethylaminoethoxide)_4$.

  • 송문균;강상우;이시우
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.45-49
    • /
    • 2003
  • 본 논문에서는 gate 산화막을 위한 Hf oxide 박막을 $Hf(dmae)_4$ (dmae=dimethylaminoethoxide) 전구체로 Direct Liquid Injection Metal Organic Chemical Vapor Deposition (DLI-MOCVD)방법을 이용하여 p-type Si(100) 기판 위에 증착하였다. 이 전구체를 이용하여 $150^{\circ}C$의 낮은 증착 온도에서도 낮은 carbon 농도와 roughness를 가지는 양질의 박막을 증착할 수 있었다. 증착된 박막은 비정질 구조를 나타내었지만 annealing 온도를 증가시킴에 따라서 결정성(monoclinic phase)을 나타내었다. $500{\AA}$으로 증착한 박막을 C-V 와 I-V curve를 통하여 전기적 특성을 평가하였다. 열처리 온도가 증가함에 따라 유효유전상수(k)는 증가하지만 열처리 온도가 $900^{\circ}C$ 이상이 되면 계면층의 형성에 의해 유효유전상수는 감소하게 되고 이에 따라 누설 전류도 감소하게 된다. 산소분위기 $800^{\circ}C$에서 annealing한 $HfO_2$ 박막의 유전상수는 20.1이고, 누설 전류 밀도는 SV에서 $2.2\times10^{-6}A/\textrm{cm}^2$ 로 좋은 전기적 특성을 가진다.

  • PDF

Crystallographic Relationships of (Ba, Sr) $TiO_3$Thin Film Prepared by Metal-Organic Chemical Vapor Deposition on (111) Textured Pt Electrode

  • Yoo, Dong-Chul;Lee, Jeong-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.11
    • /
    • pp.1126-1129
    • /
    • 2000
  • The crystallographic orientations of $Ba_{0.6}$S $r_{0.4}$Ti $O_3$(BST) thin film deposited by a metal-organic chemical vapor deposition on (111) textured Pt electrode were studied with a transmission electron microscopy. The fully crystallized BST thin film (50nm) has (100) and (110) preferred orientations. A high resolution transmission electron microscopy study has revealed the crystallographic orientation relationships between BST thin film and Pt electrode. These relationships explained the preferred orientation of BST film on (111) textured Pt electrode. With these results, we could represent the atomic arrangement at the BST/Pt interface.e.e.

  • PDF

Liquid Phase Deposition of Transition Metal Ferrite Thin Films: Synthesis and Magnetic Properties

  • Caruntu Gabriel;O'Connor Charles J.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.703-709
    • /
    • 2006
  • We report on the synthesis of highly uniform, single phase zinc and cobalt thin films prepared by the Liquid Phase Deposition (LPD) method. X-Ray diffraction, TGA and EDX measurements support the assumption that the as deposited films are constituted by a mixture of crystallized FeOOH and amorphous M(OH)$_2$ (M=Co, Zn) which is converted upon heat treatment in air at 600?C into the corresponding zinc ferrites. The films with adjustable chemical compositions are identified with a crystal structure as spinel-type and present a spherical or rod-like microstructure, depending on the both the nature and concentration of the divalent transition metal ions. Zinc ferrite thin films present a superparamagnetic behavior above blocking temperatures which decrease with increasing the Zn content and are ferromagnetic at 5 K with coercivities ranging between 797.8 and 948.5 Oe, whereas the cobalt ferrite films are ferromagnetic at room temperature with magnetic characteristics strongly dependent on the chemical composition.