• Title/Summary/Keyword: metal contact

Search Result 1,119, Processing Time 0.024 seconds

A Study on Performance Improvement of PEMFC Using Wire Mesh Cell Structure (Wire Mesh 적용을 통한 PEMFC 성능 향상에 관한 연구)

  • Jin, Sang-Mun;Beack, Suk-Min;Heo, Seong-Il;Yang, Yoo-Chang;Kim, Sae-Hoon
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.4
    • /
    • pp.295-300
    • /
    • 2010
  • Metal bipolar plate applied to Polymer Electrolyte Membrane Fuel Cell is getting most attractive due to their good feasibility of mass production and low cost. But it is one of the immediate causes of performance decline because it is difficult to reduce channel pitch of metal bipolar plate. In this study, mesh was inserted in between bipolar plate and GDL to obtain uniform contact pressure without reducing channel pitch. The section measuring and performance test were carried out to confirm the mesh structure distributes contact pressure equally in reacting area. The performance of 3 type mesh structures developed in this study were higher than the normal cell at all over the current range. Especially, it showed that the mesh cell performance was increased and pressure drop was decreased with diminishing mesh gap size. The Mesh structure was more sensitive to humidification and contact pressure change than the normal cell.

Analysis of Drawbead Process by Static-Explicit Finite Element Method

  • Jung, Dong-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1687-1692
    • /
    • 2002
  • The problem analyzed here is a sheet metal forming process which requires a drawbead. The drawbead provides the sheet metal enough tension to be deformed plastically along the punch face and consequently, ensures a proper shape of final products by fixing the sheet to the die. Therefore, the optimum design of drawbead is indispensable in obtaining the desired formability. A static-explicit finite element analysis is carried out to provide a perspective tool for designing the drawbead. The finite element formulation is constructed from static equilibrium equation and takes into account the boundary condition that involves a proper contact condition. The deformation behavior of sheet material is formulated by the elastic-plastic constitutive equation. The finite element formulation has been solved based on an existing method that is called the static-explicit method. The main features of the static-explicit method are first that there is no convergence problem. Second, the problem of contact and friction is easily solved by application of very small time interval. During the analysis of drawbead processes, the strain distribution and the drawing force on drawbead can be analyzed. And the effects of bead shape and number of beads on sheet forming processes were investigated. The results of the static explicit analysis of drawbead processes show no convergence problem and comparatively accurate results even though severe high geometric and contact-friction nonlinearity. Moreover, the computational results of a static-explicit finite element analysis can supply very valuable information for designing the drawbead process in which the defects of final sheet product can be removed.

A Study on the Improvement of Adhesive Strength of Between Metal and Polyethylene Materials (금속재와 폴리에틸렌 재료간의 접착강도 향상에 대한 연구)

  • Lee, Ji-Hoon;Kim, Hyun-Ju;Jung, Dong-Ho;Rhee, Kyong-Yop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.143-148
    • /
    • 2007
  • Polyethylene is a typical hydrophobic material and it is difficult to bond the polyethylene material with metal material. Thus, it is important to modify the surface of polyethylene material to improve the bonding strength between the polyethylene and the metal materials. In this study, the surface modification of polyethylene material was investigated to improve the interfacial strength between the polyethylene and the steel materials. Polyethylene material was surface-modified in a plasma cleaner using an oxygen gas. Two cases of composites (surface-modified pelyethylene/steel composite and regular (as-received) pelyethylene/steel composite) were fabricated using a secondary bonding method. Shear and bending tests have been performed using the two cases of composites. The results showed that the contact angle did not change much as the modification time increased. However, the contact angle decreased from ${\sim}76^{\circ}\; to\;{\sim}41^{\circ}$ with the modification. The results also showed that the shear strength and the bending strength were improved about 3030 % and 7 %, respectively when the polyethylene was plasma-modified using an oxygen gas.

Influence of Operating Condition on Grinding Temperature in High Effect Grinding (고능률 가공에서 연삭 온도에 미치는 연삭 조건의 영향)

  • 김남경;강대민;송지복
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.31-39
    • /
    • 1990
  • In this paper, the influence of the table speed, metal removal rate and grinding fluid on long wheel workpiece contact zone at high effect grinding was investigated by theoretical analyses and measuring the temperature, and discussed by the temperature distribution in grinding surface layer. Main results obtained are as follows, 1) Rega.dless of the table speed, the temperature gap of the workpiece(heat influx) is about 6-8 times as high in dry condition as in wet condition. 2) Good grinding condition can be obtained owing to the effect of grinding fluid without any burning defect under the condition of the metal removal rate(1.0mm$^3$/mm.s) in case of wet grinding. 3) When the depth from the surface layer is about 1.25-1.5mm under the condition of the slow table speed, surface temperature goes up higher as the table speed slows down, because long contact time is laked at the surface layer. 4) In case of the same metal removal rate, the lower the table speed becomes, the higher the surface temperature is, because grinding depth has a far more influence on wheel workpiece contact zone than the table speed.

  • PDF

Toxicity evaluation based on particle size, contact angle and zeta potential of SiO2 and Al2O3 on the growth of green algae

  • Karunakaran, Gopalu;Suriyaprabha, Rangaraj;Rajendran, Venkatachalam;Kannan, Narayanasamy
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.243-255
    • /
    • 2015
  • In this investigation, ecotoxicity of nano and micro metal oxides, namely silica ($SiO_2$) and alumina ($Al_2O_3$), on the growth of green algae (Porphyridium aerugineum Geitler) is discussed. Effects of nano and micro particles on the growth, chlorophyll content and protein content of algae are analysed using standard protocols. Results indicate that $SiO_2$ nano and micro $SiO_2$ particles are non-toxic to P. aerugineum Geitler up to a concentration of 1000 mg/L. In addition, $Al_2O_3$ microparticles are less toxic to P. aerugineum Geitler, whereas $Al_2O_3$ nanoparticles are found to be highly toxic at 1000 mg/L. Moreover, $Al_2O_3$ nanoparticles decrease the growth, chlorophyll content, and protein content of tested algae. In addition, zeta potential and contact angle are also important in enhancing the toxicity of metal oxide nanoparticles in aquatic environment. This study highlights a new insight into toxicity evaluation of nanoparticles on beneficial aquatic organisms such as algae.

Sectional analysis of stamping processes using Equilibrium approach (평형해법에 의한 스탬핑 공정의 단면 해석)

  • Yoon, J.W.;Yoo, D.J.;Song, I.S.;Yang, D.Y.;Lee, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.58-68
    • /
    • 1994
  • An equilibrium approach is suggested as an effective tool for the analysis of sheet metal forming processes on the basis of force balance together with geometric relations and plasticity theroy. In computing a force balance equation, it is required to define a geometric curve approximating the shape of the sheet metal at any step of deformation from the geometric interaction between the die and the deforming sheet. Then the geometic informations for contacting and non-contacting sections of the sheet metal such as the number and length of both non-contact region, contact angle, and die radius of contact section are known from the geometric forming curve and utilized for optimization by force balance equation. In computation, the sheet material is assumed to be of normal amisotropy and rigid-phastic workhardening. It has been shown that there are good agreements between the equilibrium approach and FEM computation for the benchmark test example and auto-body panels whose sections can be assumed in plane-strain state. The proposed equilibrium approach can thus be used as a robust computational method in estimating the forming defects and forming severity rather quickly in the die design stage.

  • PDF

Control of free surface shape in the electromagnetic casting process (전자기 주조공정에서의 자유표면 형상 제어)

  • 박재일;강인석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.612-615
    • /
    • 1996
  • In the continuous casting process, molten metal contacts the mold wall and the molten metal surface is subject to the mold oscillation. The mold oscillation results in the oscillation marks on the surface of solidified steel, which has undesirable effects on the quality of slabs. In order to reduce the oscillation marks by achieving soft contact of molten metal with the mold surface, alternating magnetic field is applied to the surface of molten metal. However, if the magnetic field strength becomes too strong, the melt flow induced by the magnetic field. causes the instability of the molten metal surface, which has also the bad influence on the slab quality. Therefore, it is very important to choose the optimal position of the inductor coil and the optimal level of electric power to minimize the surface defects. In the present work, as a first step toward the optimization problem of the process, numerical studies are performed to investigate the effects of coil position and the electric power level on the meniscus shape and the flow field. As numerical tools, the boundary integral equation method(BIEM) is used for the magnetic field analysis and the finite difference method (FDM) with orthogonal grid generation is used for the flow analysis.

  • PDF

Proposal of Novel Friction Testing Method in Bulk Metal Forming (체적성형공정에서의 새로운 마찰시험법 제안)

  • Kang, S.H.;Yun, Y.W.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.445-449
    • /
    • 2009
  • With the recent increase in the demand for the net-shape forming, numerical simulations are being commonly adopted to increase the efficiency and effectiveness of design of bulk metal forming processes. Proper consideration of tribological problems at the contact interface between the tool and workpiece is crucial in such simulations. In other words, lubrication and friction play important roles in metal forming by influencing the metal flow, forming load and die wear. In order to quantitatively estimate such friction condition or lubricant characteristic, the constant shear friction model is widely used for bulk deformation analyses. For this, new friction testing method based on the forward or backward extrusion process is proposed to predict the shear friction factor in this work. In this method, the tube-shaped punch pressurizes the workpiece so that the heights at the center and outer of punch (or mandrel) become different according to the friction condition. That is, the height at the center of punch is higher than that at the outer of the punch when the friction condition at the contact interface is severe. From this founding, the proposed friction testing method can be applied to effectively evaluate the friction condition in bulk metal forming processes.

  • PDF

Influence of Metal-Coating Layer on an Electrical Resistivity of Thick-Film-Type Thermoelectric Modules Fabricated by a Screen Printing Process (스크린 프린팅 공정에 의해 제조된 열전후막모듈의 전기저항에 미치는 금속코팅층의 영향)

  • Kim, Kyung-Tae;Koo, Hye-Young;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.423-429
    • /
    • 2011
  • Thermoelectric-thick films were fabricated by using a screen printing process of n and p-type bismuth-telluride-based pastes. The screen-printed thick films have approximately 30 ${\mu}m$ in thickness and show rough surfaces yielding an empty gap between an electrode and the thick film. The gap might result in an increase of an electrical resistivity of the fabricated thick-film-type thermoelectric module. In this study, we suggest a conductive metal coating onto the surfaces of the screen-printed paste in order to reduce the contact resistance in the module. As a result, the electrical resistivity of the thermoelectric module having a gold coating layer was significantly reduced up to 30% compared to that of a module without any metal coating. This result indicates that an introduction of conductive metal layers is effective to decrease the contact resistivity of a thick-film-typed thermoelectric module processed by screen printing.

Finite Element Modeling of Rubber Pad Forming Process (고무 패드 성형 공정의 유한요소 모델링)

  • 신수정;이태수;오수익
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.117-126
    • /
    • 1998
  • For investigating rubber pad sheet metal forming process, the rubber pad deformation characteristics as well as the contact problem of rubber pad-sheet metal has been analyzed. In this paper, the behavior of the rubber deformation is represented by hyper-elastic constitutive relations based on a generalized Mooney-Rivlin model. Finite element procedures for the two-dimensional responses, employing total Lagrangian formulations are implemented in an implicit form. The volumetric incompressibility condition of the rubber deformation is included in the formulation by using penalty method. The sheet metal is characterized by elasto-plastic material with strain hardening effect and analyzed by a commercial code. The contact procedure and interface program between rubber pad and sheet metal are implemented. Inflation experiment of circular rubber pad identifies the behaviour of the rubber pad deformation during the process. The various form dies and scaled down apparatus of the rubber-pad forming process are fabricated for simulating realistic forming process. The obtaining experimental data and FEM solutions were compared. The numerical solutions illustrate fair agreement with experimental results. The forming pressure distribution according to the dimensions of sheet metal and rubber pads, various rubber models and rubber material are also compared and discussed.

  • PDF