• Title/Summary/Keyword: metal cation

Search Result 320, Processing Time 0.03 seconds

Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1996-2000
    • /
    • 2009
  • Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.

Transport of Metal Ions Across Bulk Liquid Membrane by Lipophilic Acyclic Polyether Dicarboxylic Acids (Lipophilic Acyclic Polyether Dicarboxylic Acid 에 의한 액체막을 통한 금속이온의 이동)

  • Jo, Mun Hwan;Jo, Seong Ho;Lee, In Jong
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.129-135
    • /
    • 1994
  • Acyclic polyether dicarboxylic acid have been studied as metal cation carriers in a bulk liquid membrane system. The proton-ionizable ligands feature allows the coupling of a cation transport to reverse proton transport. This feature offers promise for the effective separation and concentration of metal cations with the metal cation transport being driven by a pH gradient. Metal cation transport increased regularly with increasing hydroxide($H^-$) concentration of source phase and with proton($H^+$) concentration of receiving phase. Competitive transport by the acyclic polyether dicarboxylic acids is selective for calcium ion over other alkaline-earth cations.

  • PDF

Molecular Dynamics Simulation and Density Functional Theory Investigation for Thiacalix[4]biscrown and its Complexes with Alkali-Metal Cations

  • Hong, Joo-Yeon;Lee, Che-Wook;Ham, Si-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.453-456
    • /
    • 2010
  • The structural and energetic preferences of thiacalix[4]biscrown-5 with and without alkali metal ions ($Na^+$, $K^+$, $Rb^+$, and $Cs^+$) have been theoretically investigated for the first time using molecular dynamic (MD) simulations and density functional theory (MPWB1K/6-31G(d)//B3LYP/6-31G(d)) methods. The formation of the metal ion complex by the host is mainly driven by the electrostatic attraction between crown-5 oxygens and a cation together with the minor contribution of the cation-$\pi$ interaction between two facing phenyl rings around the cation. The computed binding energies and the atomic charge distribution analysis for the metal binding complexes indicate the selectivity toward a potassium ion. The theoretical results herein explain the experimentally observed extractability order by this host towards various alkali metal ions. The physical nature and the driving forces for cation recognition by this host are discussed in detail.

Solvent Extractions of Alkali Metal Cations and Alkaline Earth Cations by Ionizable Crown Ether Phosphonic Acids (이온성 크라운에테르 포스포닉산에 의한 알칼리 금속 양이온과 알칼리 토금속 양이온의 용매추출)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.50-55
    • /
    • 2005
  • A comparison of alkali metal cation and alkaline earth cation solvent extraction was made for three additional monoionizable crown ethers and one diionizable crown ether. sym-(n-Octyldibenzo)-16-crown-5-oxyacetic acid $\underline{1}$ exhibited high efficiency and selecvity in solvent extraction of alkali metal cations with respect to that observed with alkaline earth cations. Sizes of $Na^+$ and $Ca^{2+}$ appropriately match with the cavity size of monoethyl sym-bis[4(5)-tert-butylbenzo]-16-crown-5-oxymethylphosphonic acid $\underline{3}$. As the result, $Na^+$ and $Ca^{2+}$ are the best extracted. sym-(n-Octyldibenzo)-16-crown-5-oxymethyldiphosphonic acid $\underline{4}$was found to be somewhat selective for $Na^+$ over $Li^+$ and other alkaline earth metal cations. In the complexation of alklaine earth cations by crown ether diphosphonic acid $\underline{4}$, $Ca^{2+}$ and $Sr^{2+}$ are the appropriate sizes, but lager $Ba^{2+}$ may be due to favorable formation of a sandwich type complex between the crown ether cavity and the dianion of the deprotonated crown ether phoaphonic acid moiety.

Competitive Solvent Extraction of the Mixture of Alkali Metal and Alkaline Earth Metal Cation containing Crown Ether Carboxylic Acid and Crown Ether Phosphonic Acid (크라운에테르 카르복시산과 크라운에테르 포스포닉산을 포함한 알칼리 금속과 알칼리 토금속 양이온 혼합물의 경쟁적 용매추출)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.219-227
    • /
    • 2005
  • Competitive solvent extraction of the mixure of alkali metal and alkaline earth cation from water into organic solvent containing the crown ether carboxylic acid and anlogous crown ether phosphonic acid was investigated as follows. The lipophilic group is found to strongly influence to the selective extraction in the mixed systems from only alkali metal cation for sym-(n-decyldibenzo)-16-crown-5-oxyacetic acid $\underline{1}$ to mostly alkaline earth metal cation for sym-bis[4(5)-tert-butylbenzo]-16-crown-5-oxyacetic acid $\underline{3}$. Monoethyl sym-(n-decyldibenzo)-16-crown-5-oxymethylphosphonic acid $\underline{2}$. and monoethyl-sym- bis]4(5)-tert-butylbenzo]-16-crown-5-oxymethylphosphonic acid $\underline{4}$ showed good selectivity for $Na^+$ over $Mg^{2+}$, the second extracted ion. Structural variation in the crown ether phosphonic acid somewhat was influenced to the extraction selectivity in the mixed systems. when variation of the ionized group is influenced in the mixed systems, the selectivity of $Na^+$ as the second extracted ion was much better crown ether carboxylic acid $\underline{1}$ than crown ether phosphonic acid $\underline{2}$, while the efficiency of $Na^+$ extraction was better $\underline{2}$ (83% total loading) than $\underline{1}$ (32%).

The Effect of Ion Exchange Membrane on the Electrical Conduction in Metal Fuel Cell (금속연료전지에서 이온교환막이 전기전도에 미치는 영향)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2235-2239
    • /
    • 2010
  • In this study, The cation exchange membrane and the anion exchange membrane affect in electrical conduction of metal fuel cell was investigated. Magnesium material as anode electrode and the NaCl solution dissolved with 5~15wt% as electrolyte were used for the metal fuel cell. It was found that magnesium slag where flows toward the air electrode was suppressed by using ion exchange membrane. The open circuit voltage variation during discharge has very flat pattern by using ion exchange membrane, but the case which is not the exchange membrane, the open circuit voltage increased according to time. When using the anion exchange membrane, the electric current was higher case of the cation exchange membrane, as a result of higher equivalent conductivity in anion Cl-. The cation exchange membrane was observed with the fact that the output power is excellent in compared with anion exchange membrane.

Retention Behavior of Transition Metal ions with Some Complexing Agents on Cation Exchanger

  • Park, Yang-Soon;Joe, Kih-Soo;Lee, Gae-Ho;Han, Sun-Ho;Eom, Tae-Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.692-696
    • /
    • 1993
  • Prediction of retention times in transition metal-mandelate and transition metal-tartrate complex systems were studied on the cation exchanger. Plots of k' vs [mandelate] and k' vs [tartrate] were obtained under the condition of a constant competing cation concentration. The equation to predict the retention time of transition metal ion was derived from the ion exchange equilibria. Individual capacity factors (${k_1}',\;{k_2}'$) and stability constants ($K_1,\;K_2$) of the complexes were calculated from the non-linear least square method. Good resolution of the transition metals was predicted by the stepwise equation in the gradient method. The values of retention times from the calculation and the experiment agreed well each other.

Diaza-18-crown-6 Ethers Containing Partially-fluorinated Benzyl Sidearms: Effects of Covalently Bonded Fluorine on the Alkali Metal Complexation

  • Chi, Ki-Whan;Shim, Kwang-Taeg;Huh, Hwang;Lee, Uk;Park, Young-Ja
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.393-398
    • /
    • 2005
  • The stability constants for the diaza-18-crown-6 ethers 2-6 and alkali metal cations ($Na^+,\;K^+,\;Rb^+\;and\;Cs^+$) were determined using potentiometry in 95% methanol. For each metal ion the stability constants of the partiallyfluorinated ligands 3-6 were larger than that of the non-fluorinated ligand 2, which might reflect an interaction between fluorine atoms and alkali metal cations. The stability constant of the ligand 4 was larger than that of the ligand 5 for each metal cation tested. This finding was also supported by the results of cation-induced chemical shifts in $^1H-,\;^{19}F$-NMR and extraction experiment. The potentiometry and NMR results as well as the X-ray crystal structures revealed that the position and number of fluorine atoms in the benzyl side arms was crucial for the enhanced interaction between a ligand and an alkali metal.

Study on Separation of Heavy Metal Ions in A Neutral Macrocycle-Mediated Emulsion Liquid Membrane System

  • Moon-Hwan Cho;Hea-Suk Chun;Jin-Ho Kim;Chang-Hwan Rhee;Si-Joong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.474-477
    • /
    • 1991
  • The preferential transport phenomena of neutral cation-anion moieties in neutral macrocycle-facilitated emulsion liquid membrane were described in this study. Emulsion membrane systems consisting of (1) aqueous source phase containing 0.001 M M($NO_3$)$_2(M=Mn^{2+},\;Co^{2+},\;Ni^{2+},\;Cu^{2+},\;Zn^{2+},\;Sr^{2+},\;Cd^{2+},\;and\;Pb^{2+})$ (2) a toluene membrane containing 0.01 M ligand $(DBN_3O_2$, DA18C6, DT18C6, TT18C6, HT18C6) and the surfactant span 80 (sorbitan monooleate) (3% v/v) and (3) an aqueous receiving phase containing $Na_2S_2O_3$ or $NaNO_3$ were studied with respect to the disappearence of transition metal ions from the source phase as a function of time. Cation transports for various two component or three component equimolar mixture of transition metal and $Cu^{2+}$ in a emulsion membrane system incorporating macrocyclic ligand (HT18C6) as carrier were determinded. $Cu^{2+}$ was transported higher rates than the other $M^{2+}$ in the mixture solution. Equilibrium constants for cation-source phase co-anion, cation macrocycle and cation-receiving phase reagent interaction are examined as parameters for the prediction of cation transport selectivities.

Medium effects on the H-Atom Abstraction and Silyl-Transfer Photoreactions of Silylalkyl Ketones

  • Oh, Sun-Wha
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.47-50
    • /
    • 2005
  • Mediumeffects have been explored on the competitive H-atom abstraction and SET-promoted, silyl-transfer reactions of excited states of silylalkyl-substituted phenyl ketones. The chemical selectivities of photochemical reactions of silylalkyl phenyl ketones appear to depend on medium polarity, medium silophilicity, added metal cation and alkyl length. Irradiations of silylalkylketones in aqueous solvent system and in presence of metal cation such as $Li^+$ and $Mg^{+2} $lead to formation of acetophenone predominantly by the sequential SET-silyl transfer route.

  • PDF