• 제목/요약/키워드: metal bipolar plate

검색결과 50건 처리시간 0.022초

저온 PEMFC용 금속분리판 코팅의 내구 특성 연구 (Coating Durability of Metal Bipolar plate for Low Temperature PEMFC)

  • 강성진;전유택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.82.2-82.2
    • /
    • 2010
  • The development of bipolar plate having high efficiency and chemical properties has a major impact on fuel cell applications commercialization. Even though graphite bipolar plate has high electric conductivity and chemical resistance, it has demerits about mass production and brittle property for commercialization. Hence, metallic bipolar plate can be substitute for fuel cell bipolar plate. Although its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions, metallic bipolar plate for PEMFC is more suitable for automotive and residential power generation system because of its high mechanical strength, low gas permeability and applicability to mass production. Therefore, several types of coating has been applied to prevent corrosion and oxide film growth and to achieve more high durability. This work presents durability of coated metal bipolar plate for low temperature PEMFC which made for fuel cell vehicle. This results showed surface treatment increase long-term durability, even electric conductivity and corrosion resistance.

  • PDF

Metal foam을 사용한 고분자 전해질 연료전지 성능 연구 (A Study on Performance of Polymer Electrolyte Membrane Fuel Cell Using Metal Foam)

  • 김묘은;김창수;손영준
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.554-559
    • /
    • 2015
  • Single cell of PEMFC (polymer electrolyte membrane fuel cell) is composed of bipolar plates, gasket, GDL and the MEA. Bipolar plate's function is the collecting electricity, helping oxygen/hydrogen gas diffuse evenly and draining the water and heat. In this work, we have conducted experiments to low contact resistance and improve the performance of a $25cm^2$ single cell by using metal forms. We have following experimental cases: 1) Conventional graphite serpentine channel bipolar plate; 2) Channel-less bipolar plate with nickel(Ni) based metal foam which coated by various materials. We focused the difference in contact resistance and performance of the single cell with metal foam depending on various coating materials. The experimental results show the similar performance of single cells between with serpentine channel bipolar plates and with channel-less bipolar plate using metal foams. In addition, single cell with metal foam shows potential to higher performance than conventional channel.

연료전지 차량용 금속분리판 개발 (Development of Metaal Bipolar plates for Fuel Cell Vehicles)

  • 진상문;양유창;김세훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.331-334
    • /
    • 2009
  • Currently, the bipolar plates are fabricated mainly from graphite materials. However, metal bipolar plate are getting most attractive due to their good feasibility of mass production and low cost. In this study, metal bipolar plates for fuel cell Vehicles were developed with a concept based on the straight flow patterns to minimize the pressure drop and spring back. And molded gasket apply to the bipolar plate for improve sealing performance. Results show that the metal bipolar plate have a high potential to replace for graphite materials in fuel cell application.

  • PDF

금속분리판의 Electro Polishing 및 CrN 코팅을 통한 PEMFC 성능 향상을 위한 연구 (A Study to Improve PEMFC Performance by Using Electro Polishing and CrN Coating on Metal Bipolar Plate)

  • 황성택;천승호;송준석;윤영훈;김병헌;장하;김대웅;현덕수;오병수
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.65-71
    • /
    • 2014
  • As an important component of a fuel cell, the bipolar plate comprises a large proportion in the fuel cell's volume, weight and price. The bipolar plate is the most widely used; however, graphite bipolar plate is large in volume, brittle and therefore easily broken during assembling. In addition, due to its poor machinability, production costs a lot, unless mass production. Compared with the graphite bipolar plate, the metal bipolar plate has good machinability, high electric conductivity and strong mechanical strength; however, it corrodes easily and has a high contact resistance, so in order to prevent corrosion and reduce the contact resistance, the basic metal needs to be processed by use of electro polishing and coating. The water which is produced by electrochemical reactions in the fuel cell must be discharged smoothly. In this study, in order to prevent corrosion the processes of electro polishing and CrN coating were used. According to the presence or absence of these processes, the contact angles can be measured and different metal bipolar plates can be made, these plates can be used for comparing and analyzing the performance of the fuel cell.

금속분리판 연료전지 스택의 구조 해석 (Structural analysis in Metal bipolar plate of Fuel Cell Stack)

  • 이상민;전지훈;이창우;서정도;장훈;김세훈;이성호;황운봉
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.101-104
    • /
    • 2007
  • 금속 분리판으로 제작된 연료전지 스택의 기계적인 거동을 유한요소 해석을 통하여 살펴보았다. 연료전지의 구성요소는 크게 금속 분리판, 가스켓, MEA, GDL, 엔드 플레이트로 나눌 수 있다. 각각의 요소들은 적절한 힘에 의하여 체결되어야 하고 이에 의해 연료전지 스택의 성능이 많아 좌우된다. 유한 요소해석을 위해 가스켓, GDL을 금속 분리판 위에서 변위에 따른 힘의 변화를 실험을 통해 구했으며, 금속 분리판의 유로 부분을 단순 평판으로 치환하여 유한 요소해석을 진행하였고, 해석 결과와 실험결과가 일치함을 확인하였다. 이를 통해 금속 분리판 스택이 체결되었을 때의 기계적 거동을 유추할 수 있다.

  • PDF

The Electrical Properties of Aluminum Bipolar Plate for PEM Fuel Cell System

  • Oh, Mee-hye;Yoon, Yeo-Seong;Park, Soo-Gil;Kim, Jae-Yong;Kim, Hyun-Hoo;Osaka, Tetsuya
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권5호
    • /
    • pp.204-207
    • /
    • 2004
  • In this work, we present the electrochemical properties of Al bipolar plate, which can be re-searched for the application of PEMFC system. Bulk resistance of the plate was measured with a four-point probe method. The electrical conductivity of noble metal coated Al plate was 4.40 x 10$^4$ S/cm. On the other hand, the electrical interfacial resistance of the noble metal coated Al plate valued at 0.15 mΩ-$\textrm{cm}^2$ and that of graphite was 0.26 mΩ-$\textrm{cm}^2$ under the holding pressure of 140 N/$\textrm{cm}^2$ at the applied current of 5 A. And the performance of Al bipolar plate for PEMFC was evaluated at various conditions. The single cell performance was more than 0.43 W/$\textrm{cm}^2$ (0.47 Wig) for noble metal coated Al bipolar plate at 5$0^{\circ}C$ under atmospheric pressure in external humidified hydrogen and oxygen condition. As the present results, we could show the results that the noble metal coated Al bipolar plates were favorable in the aspect of electrical properties compared with those of the commercialized resin-impregnated graphite plates.

PEMFC용 금속분리판 코팅 기술 개발 : II. 코팅 금속분리판 연료전지 성능 특성 연구 (Development of Surface Coating Technology for Metallic Bipolar Hate in PEMFC : II. Study on the PEMEC Performance of Coated Metallic Bipolar Plate)

  • 윤용식;정경우;양유창;안승균;전유택;나상묵
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.352-355
    • /
    • 2006
  • As the stainless steel has good corrosion resistance, mechanical property and ease of manufacture, it has been studied as the candidate material of metallic bipolar plate for automotive PIMFC. But, metal is dissolved under fuel cell operating conditions Dissolved ions contaminate a membrane electrode assembly (MEA) and, decrease the fuel cell performance. In addition, metal oxide formation on the surface of stainless steel increases the contact resistance in the fuel cell. These problems have been acted as an obstacle in the application of stainless steel to bipolar plate. Therefore, many kinds of coating technologies have been examined in order to solve these problems. In this study, stainless steel was coated in order to achieve high conductivity and corrosion resistance by several methods. Contact resistance was measured by using a tensile tester and impedance analyzer Corrosion characteristics of coated stainless steel were examined by Tafel-extrapolation method from the polarization curves in a solution simulating the anodic and cathodic environment of PEMFC. Fuel cell performance was also evaluated by single cell test. We tested various coated metal bipolar plate and conventional and graphite were also tested as comparative samples. In the result, coated stainless steel bipolar plate exhibited better cell performance than graphite to bipolar plate.

  • PDF

자동차 구동용 PEMFC 금속계 분리판 개발 (Development of PEMFC Metallic Bipolar Plate for Automotive Driving)

  • 이종찬;김기정;양유창;전유택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.89-92
    • /
    • 2007
  • The metallic bipolar plate in PEMFC is widely used for automotive driving because of its advantages, i) high strength, ii) high chemical stability, iii) low gas permeability and iv) applicability to mass production. Especially, the metallic bipolar plate which is manufactured with the sheet metal stamping process can be applied in automotive PEMFC with less volume and weight because of its thin thickness but the formability and springback problems arise in real manufacturing process. The assessment for formability and springback of metallic bipolar plate should be performed before making stamping die sets. In this work, the methodology for determining the allowable draft angle of flow passage is introduced by using finite element analysis. In analysis results, as the draft angle of flow passage increase, the major strain and thinning is increase with exponential function. The allowable draft angle without fracture is presented by fitting the results. Additionally, the staking results with manufactured metallic bipolar plates by stamping process is presented.

  • PDF

Wire Mesh 적용을 통한 PEMFC 성능 향상에 관한 연구 (A Study on Performance Improvement of PEMFC Using Wire Mesh Cell Structure)

  • 진상문;백석민;허성일;양유창;김세훈
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.295-300
    • /
    • 2010
  • Metal bipolar plate applied to Polymer Electrolyte Membrane Fuel Cell is getting most attractive due to their good feasibility of mass production and low cost. But it is one of the immediate causes of performance decline because it is difficult to reduce channel pitch of metal bipolar plate. In this study, mesh was inserted in between bipolar plate and GDL to obtain uniform contact pressure without reducing channel pitch. The section measuring and performance test were carried out to confirm the mesh structure distributes contact pressure equally in reacting area. The performance of 3 type mesh structures developed in this study were higher than the normal cell at all over the current range. Especially, it showed that the mesh cell performance was increased and pressure drop was decreased with diminishing mesh gap size. The Mesh structure was more sensitive to humidification and contact pressure change than the normal cell.

PEM 연료전지용 가스확산층-탄소 복합재료 분리판 조합체 개발 (Development of GDL-carbon Composite Bipolar Plate Assemblies for PEMFC)

  • 임준우
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.406-411
    • /
    • 2021
  • PEM(양성자 교환막) 연료 전지는 부산물로 물 만을 생성하여 친환경 에너지원으로 각광받고 있다. 이러한 연료전지의 스택을 이루는 여러 부품들 중 연료전지의 효율을 결정짓는 분리판에 관한 연구가 활발히 진행되고 있다. 복합재료 분리판은 높은 강도와 강성 및 내식성을 갖지만 상대적으로 낮은 전기 전도도를 갖는 단점이 있다. 본 연구에서는 이러한 단점을 극복하고자 가스확산층(GDL)-복합재료 분리판 조합체를 개발하고 그 성능을 실험적으로 확인하였다. 선행 연구에서 개발된 흑연 포일 코팅법을 분리판과 GDL 간의 접촉 저항을 줄이기 위해 적용하였다. 또한, 스택 내의 전자 이동경로를 향상시키고 GDL과 분리판 사이의 접촉저항을 최소화하기 위하여 금속 박막을 이용하여 GDL-분리판 조합체를 제작하였다. 실험 결과 개발된 GDL-분리판 조합체는 기존의 복합재료 분리판과 비교하여 98% 낮은 전기저항을 갖는 것을 확인하였다.