• Title/Summary/Keyword: metal activated carbon

Search Result 168, Processing Time 0.024 seconds

Adsorption properties and metal growth aspects on the surface of activated carbon monolith electrochemically deposited with Ag

  • Oh, Won-Chun;Lim, Chang-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.37-46
    • /
    • 2004
  • The electrochemical adsorption of the Ag ions from aqueous solution on pelletized activated carbon monolith was investigated over wide range of operation time. The adsorption capacities of pelletized activated carbon monolith are associated with their internal porosity and are related properties such as surface area, pore size distribution. The chemical industry generates wastewater that contains toxic matters like heavy metals in small concentrations so that their economic recovery is not feasible. But, the method using activated carbon monolith can be used to withdrawal of heavy metals in waste water. After the electrochemical treatment, the quantitative properties in Ag ion solutions are also examined by pH concentration and studied elemental analysis by ICP-Atomic Emission Spectrometer and Energy Disperse X-ray (EDX) spectra. It is consider that the pH is very important factor at the reason of water pollutant with increasing acidity in industrial field. The result of quantitative analysis using Inductively Coupled Plasma-Atomic Emission Spectrometer of metal after electrochemical reaction in Ag ions solution depending on time are shown that the amount of Ag ions deposited was decreased with growth of Ag particles on the carbon surfaces as increasing electrochemically treated time. And, surface morphologies are investigated by scanning electron microscopy (SEM) to explain the changes in adsorption properties.

Phosphate Adsorption on Metal-Impregnated Activated Carbon (금속담지 활성탄의 인산염 흡착특성)

  • Hwang, Min-Jin;Hwang, Yu Sik;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.642-648
    • /
    • 2015
  • Oak wood based activated carbon was modified with surface impregnation of $Fe^{3+}$ and $Al^{3+}$ metal ions mixture for enhancements of phosphate adsorption capacity in aqueous solution. The phosphate adsorption capacity of the prepared metal impregnated carbon (MC) was about 8 times higher than that of the original activated carbon (OC). Adsorption equilibrium capacities of the phosphate increased with increasing system temperature. The adsorption equilibrium isotherm of phosphate on the prepared MC could be represented by the Langmuir equation. Thermodynamic parameters also indicated that adsorption system was spontaneous and endothermic reaction. The internal diffusion coefficient was measured to analyze the adsorption behavior and kinetic rate. To determine the internal diffusion coefficient, pore diffusion model (PDM) was employed and the result was in good agreement with experimental data.

Production of Activated Carbon from Waste Walnut Shell Using Phosphoric Acid and Its Adsorption Characteristics for Heavy Metal Ion (인산활성화제에 의한 폐호도껍질을 원료로 한 활성탄제조 및 이의 중금속 이온 흡착특성)

  • Lee Go-Eun;Ahn Ju-Hyun;Kim Dong-Su
    • Resources Recycling
    • /
    • v.12 no.3
    • /
    • pp.13-24
    • /
    • 2003
  • The production characteristics of activated carbon from waste walnut shell have been investigated by taking activation temperature, activation time, amount of activating agent, and kind of activating agent as the major influential factors. The adsorption capacity of the activated carbon which was produced using phosphoric acid as the activating agent increased with activation temperature and showed its greatest value at about $550^{\circ}C$. Yield for activated carbon was observed to decrease continuously as the activation temperature was raised. The optimal activation time for the highest adsorption capacity was found to be about 2 hr, and as the activation time increased the yield for activated carbon was showed to decrease continuously. The increase in the amount of activating agent resulted in the increase of the yield for activated carbon, however, excessive amount of activating agent deteriorated its adsorption capacity reversely. The variations of the microstructure of activated carbon observed by SEM with several influential factors, correlated very well with its changes in the adsorbability with the same factors and the kind of activating agent was found to play an important role in the determination of the adsorption capacity of activated carbon. To investigate the adsorption characteristics of the produced activated carbon, the adsorption reactions of $Cu^{2+}$ ion were examined using the produced activated carbon as the adsorbent. In general, the kinetics of the adsorption of $Cu^{2+}$ ion was observed to follow a 2nd-order reaction and the rate constant for adsorption reaction increased as the initial concentration of adsorbate was diminished. The equilibrium adsorption of $Cu^{2+}$ was explained well with Freundlich model and its adsorption reaction was found to be endothermic. The activation energy for adsorption was calculated to be 13.07 kcal/mol, which implied that the adsorption reaction was very irreversible, and several thermodynamic parameters of adsorption reaction were estimated using van't. Hoff equation and thermodynamic relationships.

Comparative Investigation of the Hydrogen Production of Zinc/carbons Prepared from Non-activated Carbon and Surface-modified Activated Carbon by Treatment with Zinc Salts

  • Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.607-612
    • /
    • 2007
  • Zn-AC and Zn-H-AC series prepared from non- and surface-modified activated carbon were investigated in terms of their hydrogen production capacity. An increase in the concentration of the zinc salts used with these series was shown to lead to a decrease in the values of the surface textural properties. The existence of zinc complexes on the surface was confirmed from an analysis of XRD data. The SEM micrographs of the two different sample types showed that the transformation of the carbon surface with an acid pre-treatment significantly change the metal contents on the surfaces of the carbon matrix. The EDX spectra indicated that all of the samples were richer in the amount of oxygen and zinc compared to any other elements. The results obtained using the Boehm's titration method showed that the positive introduction of the acidic groups on the carbon surfaces with the acid treatment is correlated with an increase in the amounts of zinc complexes with variation of the acidic groups. In terms of the hydrogen production performance, the volume fractions of the Zn-H-AC series were found to produce higher amounts than the Zn-AC series as a function of the metal contents considering the effects of the acid treatment.

Hydrogen Storage Technology by Using Porous Carbon Materials (다공성 탄소계 재료를 이용한 수소저장 기술)

  • Lee, Young Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.465-472
    • /
    • 2009
  • The technologies for improving the capacity of hydrogen storage were investigated and the recent data of hydrogen storage by using various porous carbon materials were summarized. As the media of hydrogen storage, activated carbon, carbon nanotube, expanded graphite and activated carbon fiber were mainly investigated. The hydrogen storage in the carbon materials increased with controlled pore size about 0.6~0.7 nm. In case of catalyst, transition metal and their metal oxide were mainly applied on the surface of carbon materials by doping. Activated carbon is relatively cheap because of its production on a large scale. Carbon nanotube has a space inside and outside of tube for hydrogen storage. In case of graphite, the distance between layers can be extended by intercalation of alkali metals providing the space for hydrogen adsorption. Activated carbon fiber has the high specific surface area and micro pore volume which are useful for hydrogen storage. Above consideration of research, porous carbon materials still can be one of the promising materials for reaching the DOE target of hydrogen storage.

A Study on the Surface and Antibacterial Properties for M(Cd, Cu)-Activated Carbon (M(Cd, Cu)-활성탄의 표면 특성과 항균성에 관한 연구)

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Myung-Kun
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.105-110
    • /
    • 1999
  • The studies on the adsorption properties and the antibacterial effects of the Cd and Cu-treated activated carbon were carried out. From the adsorption studies on the series of these metal-treated activated carbons, typical Type-I isotherm was observed. The surface areas of the treated carbon obtained from BET equation were in the range of $1101-1418m^2/g$ for Cd-AC and of $1084-1361m^2/g$ for Cu-AC. Using ${\alpha}_s$-plot, the micropore volumes and pore size distribution were obtained. From the SEM study, it is also observed that many of micropores in activated carbon are blocked by window blocking effect of metals after the impregnation. Finally, antibacterial effects of M-activated carbon against Escherichia coli was discussed. From the study, the area of antibacterial activity becomes larger with the increase of the amount of metal treated.

  • PDF

Adsorption characteristics of tert-Butyl Mercaptan on Impregnated Activated Carbon (첨착활성탄을 이용한 tert-Butyl Mercaptan의 흡착특성 연구)

  • Kim S. B.
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.47-52
    • /
    • 2003
  • The adsorption characteristics of rert-butyl mercaptan(TBM) on base activated carbon and activated carbon impregnated with $CuCl_2$ or KI were studied. Adsorption of TBM on the surface of the KI or $CuCl_2$ impregnated activated carbon was detected by gas chromatograph equipped with a flame photometric detector. The amount of adsorption on those impregnated carbon found to be 7 or 8 times greater than on the non-impregnated activated carbon and varied according to the concentration of impregnated metal. FT-IR measurement showed that major reaction occuring on the surface of the catalytic adsorbent was dimerization of TBM into di-tert-butyl disulfide which had no stench.

  • PDF

Adsorption and Antibacterial Properties of Metal Ion Treated Activated Carbon Fiber (금속이온이 처리된 활성탄소섬유의 흡착과 항균성)

  • Oh, Won-Chun;Bang, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.131-135
    • /
    • 2000
  • We studied adsorption isotherm, surface properties and antibacterial activity of Cu treated activated carbon fiber (ACF). The BET surface area of Cu treated ACF are distributed to $688.2-887.8m^2/g$. The adsorption results show that BET surface areas move gradually to lower value with increasing treated Cu mole concentration. Using t-method, the specific micropore volumes and average pore size were obtained. From the SEM study, it is also observed that many of micropores in activated carbon fiber are blocked surface after the treatment. And we also observed that the activity of E. coli in kind of colon bacillus increases gradually to larger range with increasing Cu mole ratio. From these results, we suggest the antibacterial mechanism for metal treated ACF.

  • PDF

Ambient Adsorption of Low-level Carbon Dioxide by Metal Treated Activated Carbon (양이온 함침 활성탄에서의 저농도 이산화탄소 상온 흡착특성)

  • Lee, Kyung-Mi;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.316-324
    • /
    • 2009
  • Carbon based sorbents for $CO_2$ adsorption were prepared by impregnation with alkali metals ($Li^+$, $K^+$) and alkaline earth metals ($Ca^{2+}$, $Mg^{2+}$). BET surface area of test sorbents was lower than the intrinsic activated carbon. In particular, impregnation of $Ca^{2+}$ or $Mg^{2+}$ resulted in lower surface area of specific adsorption sites than that of $Li^+$ or $K^+$. While the adsorption capacity for $CO_2$ was high in the sorbents containing $Ca^{2+}$ and $Mg^{2+}$, strong interaction with $CO_2$ would cause to drop the capacity after regeneration. The adsorption was found high relatively in the flow with a high concentration of $CO_2$ and in a low flow rate. The adsorption isotherm for the present modified AC sorbents fits well with the Freundlich model.

Kinetics of Nitric Oxide Reduction with Alkali Metal and Alkali Earth Metal Impregnated Bamboo Activated Carbon (알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.671-677
    • /
    • 2016
  • The impregnated alkali metal (Na, K), and the alkali earth metal (Ca, Mg) activated carbons were produced from the bamboo activated carbon by soaking method of alkali metals and alkali earth metals solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. The specific surface area and the pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of the used activated carbon. Carbon-NO reactions were carried out in the nonisothermal condition (the reaction temperature $20{\sim}850^{\circ}C$, NO 1 kPa) and the isothermal condition (the reaction temperature 600, 650, 700, 750, 800, $850^{\circ}C$, NO 0.1~1.8 kPa). As results, the specific volume and the surface area of the impregnated alkali bamboo activated carbons were decreased with increasing amounts of the alkali. In the NO reaction, the reaction rate of the impregnated alkali bamboo activated carbons was promoted to compare with that of the bamboo activated carbon [BA] in the order of BA(Ca)> BA(Na)> BA(K)> BA(Mg) > BA. Measured the reaction orders of NO concentration and the activation energy were 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30 [BA(Mg)], and 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol [BA(Mg)], respectively.