• Title/Summary/Keyword: metagenomic analysis

Search Result 88, Processing Time 0.024 seconds

Microbiological Characteristics of Gouda Cheese Manufactured with Pasteurized and Raw Milk during Ripening Using Next Generation Sequencing

  • Park, Wonseo;Yoo, Jayeon;Oh, Sangnam;Ham, Jun-sang;Jeong, Seok-geun;Kim, Younghoon
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.585-600
    • /
    • 2019
  • Gouda cheese, one of most popular cheeses in the Korea, has been produced from only pasteurized milk in Korean dairy farms. Recently, it has become legally possible to produce ripened cheese manufactured with raw milk in Korea. In the present study, we investigated the physico-chemical and microbiological characteristics of Gouda cheese manufactured with raw (R-GC) or pasteurized milk (P-GC) during manufacturing and ripening. Particularly, this study characterized the bacterial community structure of two cheese types, which are produced without pasteurization during ripening based on next generation sequencing of 16S rRNA gene amplicons. During ripening, protein and fat content increased slightly, whereas moisture content decreased in both P-GC and R-GC. At the 6 wk of ripening, R-GC became softer and smoother and hence, the values of hardness and gumminess, chewiness in R-GC was lower than that of P-GC. Metagenomic analysis revealed that the bacterial genera used a starter cultures, namely Lactococcus and Leuconostoc were predominant in both P-GC and R-GC. Moreover, in R-GC, the proportion of coliform bacteria such as Escherichia, Leclercia, Raoultella, and Pseudomonas were detected initially but not during ripening. Taken together, our finding indicates the potential of manufacturing with Gouda cheese from raw milk and the benefits of next generation sequencing for microbial community composition during cheese ripening.

Composition and functional diversity of bacterial communities during swine carcass decomposition

  • Michelle Miguel;Seon-Ho Kim;Sang-Suk Lee;Yong-Il Cho
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1453-1464
    • /
    • 2023
  • Objective: This study investigated the changes in bacterial communities within decomposing swine microcosms, comparing soil with or without intact microbial communities, and under aerobic and anaerobic conditions. Methods: The experimental microcosms consisted of four conditions: UA, unsterilized soil-aerobic condition; SA, sterilized soil-aerobic condition; UAn, unsterilized soil-anaerobic condition; and San, sterilized soil-anaerobic condition. The microcosms were prepared by mixing 112.5 g of soil and 37.5 g of ground carcass, which were then placed in sterile containers. The carcass-soil mixture was sampled at day 0, 5, 10, 30, and 60 of decomposition, and the bacterial communities that formed during carcass decomposition were assessed using Illumina MiSeq sequencing of the 16S rRNA gene. Results: A total of 1,687 amplicon sequence variants representing 22 phyla and 805 genera were identified in the microcosms. The Chao1 and Shannon diversity indices varied in between microcosms at each period (p<0.05). Metagenomic analysis showed variation in the taxa composition across the burial microcosms during decomposition, with Firmicutes being the dominant phylum, followed by Proteobacteria. At the genus level, Bacillus and Clostridium were the main genera within Firmicutes. Functional prediction revealed that the most abundant Kyoto encyclopedia of genes and genomes metabolic functions were carbohydrate and amino acid metabolisms. Conclusion: This study demonstrated a higher bacteria diversity in UA and UAn microcosms than in SA and SAn microcosms. In addition, the taxonomic composition of the microbial community also exhibited changes, highlighting the impact of soil sterilization and oxygen on carcass decomposition. Furthermore, this study provided insights into the microbial communities associated with decomposing swine carcasses in microcosm.

Profiling of endogenous metabolites and changes in intestinal microbiota distribution after GEN-001 (Lactococcus lactis) administration

  • Min-Gul Kim;Suin Kim;Ji-Young Jeon;Seol Ju Moon;Yong-Geun Kwak;Joo Young Na;SeungHwan Lee;Kyung-Mi Park;Hyo-Jin Kim;Sang-Min Lee;Seo-Yeon Choi;Kwang-Hee Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.153-164
    • /
    • 2024
  • This study aimed to identify metabolic biomarkers and investigate changes in intestinal microbiota in the feces of healthy participants following administration of Lactococcus lactis GEN-001. GEN-001 is a single-strain L. lactis strain isolated from the gut of a healthy human volunteer. The study was conducted as a parallel, randomized, phase 1, open design trial. Twenty healthy Korean males were divided into five groups according to the GEN-001 dosage and dietary control. Groups A, B, C, and D1 received 1, 3, 6, and 9 GEN-001 capsules (1 × 1011 colony forming units), respectively, without dietary adjustment, whereas group D2 received 9 GEN-001 capsules with dietary adjustment. All groups received a single dose. Fecal samples were collected 2 days before GEN-001 administration to 7 days after for untargeted metabolomics and gut microbial metagenomic analyses; blood samples were collected simultaneously for immunogenicity analysis. Levels of phenylalanine, tyrosine, cholic acid, deoxycholic acid, and tryptophan were significantly increased at 5-6 days after GEN-001 administration when compared with predose levels. Compared with predose, the relative abundance (%) of Parabacteroides and Alistipes significantly decreased, whereas that of Lactobacillus and Lactococcus increased; Lactobacillus and tryptophan levels were negatively correlated. A single administration of GEN-001 shifted the gut microbiota in healthy volunteers to a more balanced state as evidenced by an increased abundance of beneficial bacteria, including Lactobacillus, and higher levels of the metabolites that have immunogenic properties.

Taxonomic Variations of Bacterial and Fungal Communities depending on Fermentation Temperature in Traditional Korean Fermented Soybean Food, Doenjang

  • Eunhye Jo;Hyeyoung Lee;Younshil Song;Jaeho Cha
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.863-870
    • /
    • 2024
  • Meju, a fermented soybean brick, is a key component in soybean foods like doenjang and ganjang, harboring a variety of microorganisms, including bacteria and fungi. These microorganisms significantly contribute to the nutritional and sensory characteristics of doenjang and ganjang. Amplicon-based next-generation sequencing was applied to investigate how the microbial communities of meju fermented at low and high temperatures differ and how this variation affects the microbial communities of doenjang, a subsequently fermented soybean food. Our metagenomic data showed distinct patterns depending on the fermentation temperature. The microbial abundance in the bacterial community was increased under both temperatures during the fermentation of meju and doenjang. Weissella was the most abundant genus before the fermentation of meju, however, it was replaced by Bacillus at high temperature-fermented meju and lactic acid bacteria such as Weissella and Latilactobacillus at low temperature-fermented meju. Leuconostoc, Logiolactobacillus, and Tetragenococcus gradually took over the dominant role during the fermentation process of doenjang, replacing the previous dominant microorganisms. Mucor was dominant in the fungal community before and after meju fermentation, whereas Debaryomyces was dominant under both temperatures during doenjang fermentation. The dominant fungal genus of doenjang was not affected regardless of the fermentation temperature of meju. Strong correlations were shown for specific bacteria and fungi linked to specific fermentation temperatures. This study helps our understanding of meju fermentation process at different fermentation temperatures and highlights different bacteria and fungi associated with specific fermentation periods which may influence the nutritional and organoleptic properties of the final fermented soybean foods doenjang.

Lung Microbiome Analysis in Steroid-Naïve Asthma Patients by Using Whole Sputum

  • Jung, Jae-Woo;Choi, Jae-Chol;Shin, Jong-Wook;Kim, Jae-Yeol;Park, In-Won;Choi, Byoung Whui;Park, Heung-Woo;Cho, Sang-Heon;Kim, Kijeong;Kang, Hye-Ryun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.3
    • /
    • pp.165-178
    • /
    • 2016
  • Background: Although recent metagenomic approaches have characterized the distinguished microbial compositions in airways of asthmatics, these results did not reach a consensus due to the small sample size, non-standardization of specimens and medication status. We conducted a metagenomics approach by using terminal restriction fragment length polymorphism (T-RFLP) analysis of the induced whole sputum representing both the cellular and fluid phases in a relative large number of steroid $na{\ddot{i}}ve$ asthmatics. Methods: Induced whole sputum samples obtained from 36 healthy subjects and 89 steroid-$na{\ddot{i}}ve$ asthma patients were analyzed through T-RFLP analysis. Results: In contrast to previous reports about microbiota in the asthmatic airways, the diversity of microbial composition was not significantly different between the controls and asthma patients (p=0.937). In an analysis of similarities, the global R-value showed a statistically significant difference but a very low separation (0.148, p=0.002). The dissimilarity in the bacterial communities between groups was 28.74%, and operational taxonomic units (OTUs) contributing to this difference were as follows: OTU 789 (Lachnospiraceae), 517 (Comamonadaceae, Acetobacteraceae, and Chloroplast), 633 (Prevotella), 645 (Actinobacteria and Propionibacterium acnes), 607 (Lactobacillus buchneri, Lactobacillus otakiensis, Lactobacillus sunkii, and Rhodobacteraceae), and 661 (Acinetobacter, Pseudomonas, and Leptotrichiaceae), and they were significantly more prevalent in the sputum of asthma patients than in the sputum of the controls. Conclusion: Before starting anti-asthmatic treatment, the microbiota in the whole sputum of patients with asthma showed a marginal difference from the microbiota in the whole sputum of the controls.

Gut microbiota profiling in aged dogs after feeding pet food contained Hericium erinaceus

  • Hyun-Woo, Cho;Soyoung, Choi;Kangmin, Seo;Ki Hyun, Kim;Jung-Hwan, Jeon;Chan Ho, Kim;Sejin, Lim;Sohee, Jeong;Ju Lan, Chun
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.937-949
    • /
    • 2022
  • Health concern of dogs is the most important issue for pet owners. People who have companied the dogs long-term provide the utmost cares for their well-being and healthy life. Recently, it was revealed that the population and types of gut microbiota affect the metabolism and immunity of the host. However, there is little information on the gut microbiome of dogs. Hericium erinaceus (H. erinaceus; HE) is one of the well-known medicinal mushrooms and has multiple bioactive components including polyphenol, β-glucan, polysaccharides, ergothioneine, hericerin, erinacines, etc. Here we tested a pet food that contained H. erinaceus for improvement in the gut microbiota environment of aged dogs. A total of 18 dogs, each 11 years old, were utilized. For sixteen weeks, the dogs were fed with 0.4 g of H. erinaceus (HE-L), or 0.8 g (HE-H), or without H. erinaceus (CON) per body weight (kg) with daily diets (n = 6 per group). Taxonomic analysis was performed using metagenomics to investigate the difference in the gut microbiome. Resulting from principal coordinates analysis (PCoA) to confirm the distance difference between the groups, there was a significant difference between HE-H and CON due to weighted Unique fraction metric (Unifrac) distance (p = 0.047), but HE-L did not have a statistical difference compared to that of CON. Additionally, the result of Linear discriminate analysis of effect size (LEfSe) showed that phylum Bacteroidetes in HE-H and its order Bacteroidales increased, compared to that of CON, Additionally, phylum Firmicutes in HE-H, and its genera (Streptococcus, Tyzzerella) were reduced. Furthermore, at the family level, Campylobacteraceae and its genus Campylobacter in HE-H was decreased compared to that of CON. Summarily, our data demonstrated that the intake of H. erinaceus can regulate the gut microbial community in aged dogs, and an adequate supply of HE on pet diets would possibly improve immunity and anti-obesity on gut-microbiota in dogs.

Metagenomic analysis of viral genes integrated in whole genome sequencing data of Thai patients with Brugada syndrome

  • Suwalak Chitcharoen;Chureerat Phokaew;John Mauleekoonphairoj;Apichai Khongphatthanayothin;Boosamas Sutjaporn;Pharawee Wandee;Yong Poovorawan;Koonlawee Nademanee;Sunchai Payungporn
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.44.1-44.13
    • /
    • 2022
  • Brugada syndrome (BS) is an autosomal dominant inheritance cardiac arrhythmia disorder associated with sudden death in young adults. Thailand has the highest prevalence of BS worldwide, and over 60% of patients with BS still have unclear disease etiology. Here, we performed a new viral metagenome analysis pipeline called VIRIN and validated it with whole genome sequencing (WGS) data of HeLa cell lines and hepatocellular carcinoma. Then the VIRIN pipeline was applied to identify viral integration positions from unmapped WGS data of Thai males, including 100 BS patients (case) and 100 controls. Even though the sample preparation had no viral enrichment step, we can identify several virus genes from our analysis pipeline. The predominance of human endogenous retrovirus K (HERV-K) viruses was found in both cases and controls by blastn and blastx analysis. This study is the first report on the full-length HERV-K assembled genomes in the Thai population. Furthermore, the HERV-K integration breakpoint positions were validated and compared between the case and control datasets. Interestingly, Brugada cases contained HERV-K integration breakpoints at promoters five times more often than controls. Overall, the highlight of this study is the BS-specific HERV-K breakpoint positions that were found at the gene coding region "NBPF11" (n = 9), "NBPF12" (n = 8) and long non-coding RNA (lncRNA) "PCAT14" (n = 4) region. The genes and the lncRNA have been reported to be associated with congenital heart and arterial diseases. These findings provide another aspect of the BS etiology associated with viral genome integrations within the human genome.

Metagenomic Analysis of Bacterial Communities in Rhododendron mucronulatum in Biseul Mountain County Park, Daegu, Korea (비슬산 군립공원의 진달래에 대한 박테리아 군집 metagenomics 분석 규명)

  • Choi, Doo-Ho;Jeong, Min-Ji;Kwon, Hae-Jun;Kim, Mi-Gyeong;Kim, Dong-Hyun;Kim, Young-Guk;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.32-39
    • /
    • 2020
  • Rhododendron mucronulatum, native to Korea, Mongolia, Russia and parts of northern China, is known not only for its medicinal properties but also as a tourist attraction. One of the most famous tourist destinations with R. mucronulatum is in Biseul Mountain County Park, Daegu, Korea. To investigate the relationship between R. mucronulatum and microbiome communities in the surrounding soil, three sites within the park were chosen for sampling in February and August. The soil samples were then passed through a pyrosequencing process for analysis of the bacterial communities, and a total of 404,899 sequencing reads were obtained. Between 2,349 and 4,736 operational taxonomic units (OTUs) were observed across the three sampling zones and two seasons; samples from the park entrance showed a higher number of OTUs than the other two sites, and samples from August had more OTUs than those from February. The sample from the second observation site displayed the fewest OTUs, particularly in February. According to Chao1 and Shannon indices, samples from the park entrance in August demonstrated the highest degree of species richness and diversity. Studying the bacterial communities across the six samples identified the common population as comprising 287 genera, 45 of which are only present in Biseul Mountain County Park and are expected to participate in the colonization of R. mucronulatum.

Molecular Monitoring of Eukaryotic Plankton Diversity at Mulgeum and Eulsukdo in the Lower Reaches of the Nakdong River (낙동강 하류 물금과 을숙도 수환경의 진핵 플랑크톤 종조성에 대한 분자모니터링)

  • Lee, Jee Eun;Lee, Sang-Rae;Youn, Seok-Hyun;Chung, Sang Ok;Lee, Jin Ae;Chung, Ik Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.160-180
    • /
    • 2012
  • We have studied the eukaryotic plankton species diversity to compare the community structure of fresh and brackish waters in the lower reaches of the Nakdong River using metagenomic methods. We constructed 18S rDNA clone libraries of total DNAs extracted from environmental water samples collected at Mulgeum (MG100929, fresh) and Eulsukdo bridge (ES, brackish). Through the steps of colony PCR, PCR-RFLP, sequencing and similarity analysis, we discovered the diverse species composition of eukaryotic plankton. Total 338 clones (170 at MG100929 and 168 at ES) were analyzed, and then we found 74 phylotypes (49 for MG100929 and 25 for ES). From the phylogenetic analysis, we confirmed various eukaryotic plankton of broad range of taxonomic groups, including Stramenopiles, Cryptophyta, Viridiplantae, Alveolata, Rhizaria, Metazoa, and Fungi. We also found several unreported species in Korea and candidates of new taxonomic entities at levels higher than genus. Especially, the cryptic species diversity including unreported phylotypes of Pirsonia (Stramenopiles) and Perkinsea (Alveolata) suggests that the molecular monitoring method can produce new informative biological data in monitoring the changes in the Nakdong River Mouth ecosystem.

Metagenomic Analysis of Jang Using Next-generation Sequencing: A ComparativeMicrobial Study of Korean Traditional Fermented Soybean Foods (차세대 염기서열 분석을 활용한 장류의 메타지놈 분석 : 한국 전통 콩 발효식품에 대한 미생물 비교 연구)

  • Ranhee Lee;Gwangsu Ha;Ho Jin Jeong;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.254-263
    • /
    • 2024
  • Korean jang is a food made using fermented soybeans, and the typical products include gochujang (GO), doenjang (DO), cheonggukjang (CH), and ganjang (GA). In this study, 16S rRNA metagenome analysis was performed on a total of 200 types of GO, DO, CH, and GA using next-generation sequencing to analyze the microbial community of fermented soybean foods and compare taxonomic (biomarker) differences. Alpha diversity analysis showed that in the CHAO index, the species richness index tended to be significantly higher compared to the DO and GA groups (p<0.001). The results of the microbial distribution analysis of the GO, DO, CH, and GA products showed that at the order level, Bacillales was the most abundant in the GO, DO, and CH groups, but Lactobacillales was most abundant in the GA group. Linear discriminant analysis effect (LEfSe) analysis was used to identify biomarkers at the family and species levels. Leuconostocaceae, Thermoactinomycetaceae, Bacillaceae, and Enterococcaceae appeared as biomarkers at the family level, and Bacillus subtilis, Kroppenstedtia sanguinis, Bacillus licheniformis, and Tetragenococcus halophilus appeared at the species level. Permutational multivariate analysis of variance (PERMANOVA) analysis showed that there was a significant difference in the microbial community structure of the GO, DO, CH, and GA groups (p=0.001), and the microbial community structure of the GA group showed the greatest difference. This study clarified the correlation between the characteristics of Korean fermented foods and microbial community distribution, enhancing knowledge of microorganisms participating in the fermentation process. These results could be leveraged to improve the quality of fermented soybean foods.