• Title/Summary/Keyword: metacaspase

Search Result 6, Processing Time 0.021 seconds

Pro-Apoptotic Role of the Human YPEL5 Gene Identified by Functional Complementation of a Yeast moh1Δ Mutation

  • Lee, Ji Young;Jun, Do Youn;Park, Ju Eun;Kwon, Gi Hyun;Kim, Jong-Sik;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.633-643
    • /
    • 2017
  • To examine the pro-apoptotic role of the human ortholog (YPEL5) of the Drosophila Yippee protein, the cell viability of Saccharomyces cerevisiae mutant strain with deleted MOH1, the yeast ortholog, was compared with that of the wild-type (WT)-MOH1 strain after exposure to different apoptogenic stimulants, including UV irradiation, methyl methanesulfonate (MMS), camptothecin (CPT), heat shock, and hyperosmotic shock. The $moh1{\Delta}$ mutant exhibited enhanced cell viability compared with the WT-MOH1 strain when treated with lethal UV irradiation, 1.8 mM MMS, $100{\mu}M$ CPT, heat shock at $50^{\circ}C$, or 1.2 M KCl. At the same time, the level of Moh1 protein was commonly up-regulated in the WT-MOH1 strain as was that of Ynk1 protein, which is known as a marker for DNA damage. Although the enhanced UV resistance of the $moh1{\Delta}$ mutant largely disappeared following transformation with the yeast MOH1 gene or one of the human YPEL1-YPEL5 genes, the transformant bearing pYES2-YPEL5 was more sensitive to lethal UV irradiation and its UV sensitivity was similar to that of the WT-MOH1 strain. Under these conditions, the UV irradiation-induced apoptotic events, such as FITC-Annexin V stainability, mitochondrial membrane potential (${\Delta}{\psi}m$) loss, and metacaspase activation, occurred to a much lesser extent in the $moh1{\Delta}$ mutant compared with the WT-MOH1 strain and the mutant strain bearing pYES2-MOH1 or pYES2-YPEL5. These results demonstrate the functional conservation between yeast Moh1 and human YPEL5, and their involvement in mitochondria-dependent apoptosis induced by DNA damage.

Characterization of peptide:N-glycanase from tomato (Solanum lycopersicum) fruits (토마토 (Solanum lycopersicum) 과육의 숙성정도에 따른 peptide:N-glycanase 발현 분석)

  • Wi, Soo Jin;Park, Ky Young
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.159-167
    • /
    • 2014
  • In eukaryotes, proteins that are secreted into ER are post-translationally modified by N-glycosylation, the patterns of which are significantly different between plant and animal cells. Biotechnology industry has already produced a number of therapeutic glycoproteins in plant cells. However, the aberrant glycosylation of therapeutic recombinant proteins in plant systems can cause immune problems in humans. Therefore, it is important to develop strategies for producing non-glycosylated forms to preserve biological activity and native conformation by a peptide: N-glycanase (PNGase). In this study, we try to isolate PNGase T gene from tomato, which can use as a platform plant for biotechnology industry. We isolated a cDNA (GenBank Accession number KM401550) from tomato leaves with 1,767 bp, which encoded a polypeptide of 588 amino acids with a predicted molecular mass of 65.8 kDa. We also investigated the expression patterns of PNGase T during fruit ripening of tomato. The transcripts of PNGase T, which were constitutively induced in tomato fruit from green stage, were significantly increased and reached a peak at orange stage. After which, those transcripts were continuously reduced. The expression pattern of PNGase T was coincided well with transcripts profiles of metacaspase gene, LeMCA, and senescence-related gene members of ACC synthase, LeACS2, LeACS4, and LeACS6, for ethylene biosynthesis during fruit ripening. These results suggest that PNGase T is involved in a de-glycosylation process associated with senescence and fruit ripening.

Trehalose Protects the Probiotic Yeast Saccharomyces boulardii against Oxidative Stress-Induced Cell Death

  • Moon, Ji Eun;Heo, Wan;Lee, Sang Hoon;Lee, Suk Hee;Lee, Hong Gu;Lee, Jin Hyup;Kim, Young Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.54-61
    • /
    • 2020
  • Saccharomyces boulardii is the only probiotic yeast with US Food and Drug Administration approval. It is routinely used to prevent or treat acute diarrhea and other gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. The formation of reactive oxygen species (ROS), specifically H2O2 during normal aerobic metabolism, contributes to programmed cell death and represents a risk to the viability of the probiotic microbe. Moreover, a loss of viability reduces the efficacy of the probiotic treatment. Therefore, inhibiting the accumulation of ROS in the oxidant environment could improve the viability of the probiotic yeast and lead to more efficacious treatment. Here, we provide evidence that supplementation with a non-reducing disaccharide, namely trehalose, enhanced the viability of S. boulardii exposed to an oxidative environment by preventing metacaspase YCA1-mediated programmed cell death through inhibition of intracellular ROS production. Our results suggest that supplementation with S. boulardii together with trehalose could increase the viability of the organism, and thus improve its effectiveness as a probiotic and as a treatment for acute diarrhea and other gastrointestinal disorders.

Antileishmanial Activity of Niosomal Combination Forms of Tioxolone along with Benzoxonium Chloride against Leishmania tropica

  • Parizi, Maryam Hakimi;Farajzadeh, Saeedeh;Sharifi, Iraj;Pardakhty, Abbas;Parizi, Mohammad Hossein Daie;Sharifi, Hamid;Salarkia, Ehsan;Hassanzadeh, Saeid
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.4
    • /
    • pp.359-368
    • /
    • 2019
  • In this study, we carried out extensive in vitro studies on various concentrations of tioxolone along with benzoxonium chloride and their niosomal forms against Leishmania tropica. Niosomes were prepared by the hydration method and were evaluated for morphology, size, release study, and encapsulation efficiency. This study measured leishmanicidal activity against promastigote and amastigote, apoptosis and gene expression levels of free solution and niosomal-encapsulated tioxolone along with benzoxonium chloride. Span/Tween 60 niosome had good physical stability and high encapsulation efficiency (more than 97%). The release profile of the entrapped compound showed that a gradual release rate. The combination of niosomal forms on promastigote and amastigote were more effective than glucantime. Also, the niosomal form of this compound was significantly less toxic than glucantime ($P{\leq}0.05$). The flowcytometric analysis on niosomal form of drugs showed that higher number of early apoptotic event as the principal mode of action (89.13% in $200{\mu}g/ml$). Also, the niosomal compound increased the expression level of IL-12 and metacaspase genes and decreased the expression level of the IL-10 gene, which further confirming the immunomodulatory role as the mechanism of action. We observed the synergistic effects of these 2 drugs that induced the apoptotic pathways and also up regulation of an immunomodulatory role against as the main mode of action. Also, niosomal form of this combination was safe and demonstrated strong anti-leishmaniasis effects highlights further therapeutic approaches against anthroponotic cutaneous leishmaniasis in future planning.

A Novel Niosomal Combination of Selenium Coupled with Glucantime against Leishmania tropica

  • Mostafavi, Mahshid;Khazaeli, Payam;Sharifi, Iraj;Farajzadeh, Saeedeh;Sharifi, Hamid;Keyhani, Alireza;Parizi, Maryam Hakimi;Kakooei, Sina
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • There is no effective treatment modality available against different forms of leishmaniasis. Therefore, the aim of this study was to improve the penetration and efficacy of selenium and glucantime coupled with niosomes and compared them with their simple forms alone on in vitro susceptibility assays. In this study, the niosomal formulations of selenium and in combination with glucantime were prepared. The size and morphology of the niosomal formulations were characterized and the effectivity of the new formulation was also evaluated using in vitro MTT assay, intra-macrophage model, and gene expression profile. From the results obtained, no cytotoxicity effect was observed for niosomal and simple forms of drugs, as alone or in combination. Niosomal formulations of the drugs significantly showed more inhibitory effects ($P{\leq}0.001$) than the simple drugs when the selectivity index was considered. The gene expression levels of Interleukin (IL-10) significantly decreased, while the level of IL-12 and metacaspase significantly increased ($P{\leq}0.001$). The results of the present study showed that selenium plus glucantime niosome possess a potent anti-leishmanial effect and enhanced their lethal activity as evidenced by the in vitro experiments.

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF