• Title/Summary/Keyword: metabolites profiling

Search Result 92, Processing Time 0.02 seconds

A comparative study on chemical composition of total saponins extracted from fermented and white ginseng under the effect of macrophage phagocytotic function

  • Xiao, Dan;Xiu, Yang;Yue, Hao;Sun, Xiuli;Zhao, Huanxi;Liu, Shuying
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.379-385
    • /
    • 2017
  • In this study, white ginseng was used as the raw material, which was fermented with Paecilomyces hepiali through solid culture medium, to produce ginsenosides with modified chemical composition. The characteristic chemical markers of the products thus produced were investigated using rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-QTOF-MS). Chemical profiling data were obtained, which were then subjected to multivariate statistical analysis for the systematic comparison of active ingredients in white ginseng and fermented ginseng to understand the beneficial properties of ginsenoside metabolites. In addition, the effects of these components on biological activity were investigated to understand the improvements in the phagocytic function of macrophages in zebrafish. According to the established RRLC-QTOF-MS chemical profiling, the contents in ginsenosides of high molecular weight, especially malonylated protopanaxadiol ginsenosides, were slightly reduced due to the fermentation, which were hydrolyzed into rare and minor ginsenosides. Moreover, the facilitation of macrophage phagocytic function in zebrafish following treatment with different ginseng extracts confirmed that the fermented ginseng is superior to white ginseng. Our results prove that there is a profound change in chemical constituents of ginsenosides during the fermentation process, which has a significant effect on the biological activity of these compounds.

Comparison of metabolic profiling of Daphnia magna between HR-MAS NMR and solution NMR techniques

  • Kim, Seonghye;Lee, Sujin;Lee, Wonho;Lee, Yujin;Choi, Juyoung;Lee, Hani;Li, Youzhen;Ha, Seulbin;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.2
    • /
    • pp.12-16
    • /
    • 2021
  • Daphnia magna is used as target organism for environmental metabolomics. The metabolome of D. magna was studied with NMR spectroscopy. Most studies used the extract of D. magna, but the reproducibility cannot be obtained using extracted sample. In this study, lyophilized D. magna samples were analyzed with two different 1H NMR techniques, HR-MAS on intact tissues and solution NMR on extracted tissues. Samples were measured three times using 600 MHz NMR spectrometer. Metabolite extraction required more than twice as many D. magna, but the metabolite intensity was lower in solution NMR. In the spectra of HR-MAS NMR, the lipid signal was observed, but they did not interfere with metabolite profiling. We also confirmed the effect of swelling time on signal intensities of metabolites in HR-MAS NMR, and the results suggest that appropriate swelling should be used in lyophilized D. magna to improve the accuracy of metabolite profiles.

Effects of Different Roughage to Concentrate Ratios on the Changes of Productivity and Metabolic Profiles in Milk of Dairy Cows (조사료와 농후사료의 급여 비율이 착유유의 우유생산성과 대사산물에 미치는 영향)

  • Eom, Jun-Sik;Lee, Shin-Ja;Lee, Su-Kyoung;Lee, Yae-Jun;Kim, Hyun-Sang;Choi, You-Young;Ki, Kwang-Seok;Jeong, Ha-Yeon;Kim, Eun-Tae;Lee, Sang-Suk;Jeong, Chang-Dae;Lee, Sung-Sill
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.2
    • /
    • pp.147-160
    • /
    • 2019
  • This study was conducted to evaluate roughage to concentrate ratio on the changes of productivity and metabolic profiling in milk. Six lactating Holstein cows were divided into two groups, T1 group was fed low-concentrate diet (Italian ryegrass to concentrate ratio = 8:2) and T2 group was fed high-concentrate diet (Italian ryegrass to concentrate ratio = 2:8). Milk samples were collected and its components and metabolites were analyzed by 1H-NMR (Nuclear magnetic resonance). The result of milk components such as milk fat, milk protein, solids-not-fat, lactose and somatic cell count were not significantly different between two groups. In carbohydrate metabolites, trehalose and xylose were significantly higher (P<0.05) in T1 group, however lactose was not significantly different between two groups. In amino acid metabolites, glycine was the highest concentration however, there was no significant difference observed between two groups. Urea and methionine were significantly higher (P<0.05) in the T2 group. In lipid metabolites, carnitine, choline and O-acetylcarnitine there were no significant difference observed between the two groups. In benzoic acid metabolites, tartrate was significantly higher (P<0.05) in T2 group. In organic acid metabolites, acetate was significantly higher (P<0.05) in T1 group and fumarate was significantly higher (P<0.05) in T2 group. In the other metabolites, 3-methylxanthine was only significantly higher (P<0.05) in T2 group and riboflavin was only significantly higher (P<0.05) in T1 group. As a result, milk components were not significantly different between two groups. However, metabolites concentration in the milk was significantly different depends on roughage to concentrate ratio.

Metabolite profiling of fermented ginseng extracts by gas chromatography mass spectrometry

  • Park, Seong-Eun;Seo, Seung-Ho;Lee, Kyoung In;Na, Chang-Su;Son, Hong-Seok
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.57-67
    • /
    • 2018
  • Background: Ginseng contains many small metabolites such as amino acids, fatty acids, carbohydrates, and ginsenosides. However, little is known about the relationships between microorganisms and metabolites during the entire ginseng fermentation process. We investigated metabolic changes during ginseng fermentation according to the inoculation of food-compatible microorganisms. Methods: Gas chromatography mass spectrometry (GC-MS) datasets coupled with the multivariate statistical method for the purpose of latent-information extraction and sample classification were used for the evaluation of ginseng fermentation. Four different starter cultures (Saccharomyces bayanus, Bacillus subtilis, Lactobacillus plantarum, and Leuconostoc mesenteroide) were used for the ginseng extract fermentation. Results: The principal component analysis score plot and heat map showed a clear separation between ginseng extracts fermented with S. bayanus and other strains. The highest levels of fructose, maltose, and galactose in the ginseng extracts were found in ginseng extracts fermented with B. subtilis. The levels of succinic acid and malic acid in the ginseng extract fermented with S. bayanus as well as the levels of lactic acid, malonic acid, and hydroxypruvic acid in the ginseng extract fermented with lactic acid bacteria (L. plantarum and L. mesenteroide) were the highest. In the results of taste features analysis using an electronic tongue, the ginseng extracts fermented with lactic acid bacteria were significantly distinguished from other groups by a high index of sour taste probably due to high lactic acid contents. Conclusion: These results suggest that a metabolomics approach based on GC-MS can be a useful tool to understand ginseng fermentation and evaluate the fermentative characteristics of starter cultures.

$^1H$ NMR-Based Urinary Metabolic Profiling of Gender and Diurnal Variation in Healthy Korean Subjects (성별 및 채뇨 시각별 $^1H$ NMR 기반 뇨 대사체 프로파일링 연구)

  • Jeong, Jin-Young;Hwang, Geum-Sook;Park, Jong-Chul;Kim, Dong-Hyun;Ha, Mi-Na
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.4
    • /
    • pp.295-306
    • /
    • 2010
  • Objectives : This study was undertaken to examine the metabolomic changes due to gender and diurnal variation at sampling time and to identify an appropriate time point for urine sampling in epidemiologic studies using metabolomic profiles. Methods : Urine samples were collected twice a day (morning and afternoon) from 20 healthy Korean adults after fasting for 8 hours. The metabolomic assay was investigated using $^1H$ NMR spectroscopy coupled with the principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA). The metabolites responsible for differentiation between groups were identified through the loading plot of PLS-DA and quantified using Chenomx NMR Suite with a 600 MHz library. Results : Metabolites responsible for differentiation in gender and sampling time were creatinine, trimethyl anine oxide (TMAO), hippurate, mannitol, citrate and acetoacetate. Dimethylamine showed difference only as a factor of diurnal time. The level of creatinine was higher in men compared to women, and the levels of citrate, TMAO, hippurate, mannitol, and acetoacetate were higher in women compared to men. The levels of creatinine, TMAO, hippurate, dimethylamine and mannitol were higher in the morning rather than the afternoon while those of citrate and acetoacetate were higher in the afternoon rather than the morning. Conclusions : Since urinary metabolomic profiles varied by gender and diurnal cycle, urine sampling should be performed at the same time point for all participants in epidemiologic studies using metabolomic profiles.

Improved Resistance to Oxidative Stress by a Loss-of-Function Mutation in the Arabidopsis UGT71C1 Gene

  • Lim, Chae Eun;Choi, Jung Nam;Kim, In A;Lee, Shin Ae;Hwang, Yong-Sic;Lee, Choong Hwan;Lim, Jun
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.368-375
    • /
    • 2008
  • Approximately 120 UDP-glycosyltransferases (UGTs), which are classified into 14 distinct groups (A to N), have been annotated in the Arabidopsis genome. UGTs catalyze the transfer of sugars to various acceptor molecules including flavonoids. Previously, UGT71C1 was shown to glycosylate the 3-OH of hydroxycinnamates and flavonoids in vitro. Such secondary metabolites are known to play important roles in plant growth and development. To help define the role of UGT71C1 in planta, we investigated its expression patterns, and isolated and characterized a loss-of-function mutation in the UGT71C1 gene (named ugt71c1-1). Our analyses by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), microarray data mining, and histochemical detection of GUS activity driven by the UGT71C1 promoter region, revealed the tissue-specific expression patterns of UGT71C1 with highest expression in roots. Interestingly, upon treatment with methyl viologen (MV, paraquat), ugt71c1-1 plants displayed enhanced resistance to oxidative stress, and ROS scavenging activity was higher than normal. Metabolite profiling revealed that the levels of two major glycosides of quercetin and kaempferol were reduced in ugt71c1-1 plants. In addition, when exposed to MV-induced oxidative stress, eight representative ROS response genes were expressed at lower levels in ugt71c1-1 plants, indicating that ugt71c1-1 probably has higher non-enzymatic antioxidant activity. Taken together, our results indicate that ugt71c1-1 has increased resistance to oxidative stress, suggesting that UGT71C1 plays a role in some glycosylation pathways affecting secondary metabolites such as flavonoids in response to oxidative stress.

Transcriptome profiling and identification of functional genes involved in H2S response in grapevine tissue cultured plantlets

  • Ma, Qian;Yang, Jingli
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1287-1300
    • /
    • 2018
  • Hydrogen sulfide ($H_2S$), a small bioactive gas, has been proved functioning in plant growth and development as well as alleviation of abiotic stresses, which including promoting seed germination, accelerating embryonic root growth, regulating flower senescence, inducing stomatal closure, and defending drought, heat, heavy metals and osmotic stresses etc. However, the molecular functioning mechanism of $H_2S$ was still unclear. The primary objective of this research was to analyze the transcriptional differences and functional genes involved in the $H_2S$ responses. In details, 4-week-old plantlets in tissue culture of grapevine (Vitis vinifera L.) cultivar 'Zuoyouhong' were sprayed with 0.1 mM NaHS for 12 h, and then transcriptome sequencing and qRT-PCR analysis were used to study the transcriptional differences and functional genes involved in the $H_2S$ responses. Our results indicated that 650 genes were differentially expressed after $H_2S$ treatment, in which 224 genes were up-regulated and 426 genes were down-regulated. The GO enrichment analysis and KEGG enrichment analysis results indicated that the up-regulated genes after $H_2S$ treatment focused on carbon metabolism, biosynthesis of amino acids, and glycolysis/gluconeogenesis, and the down-regulated genes were mainly in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. Analyzing the transcription factor coding genes in details, it was indicated that 10 AP2/EREBPs, 5 NACs, 3 WRKYs, 3 MYBs, and 2 bHLHs etc. transcription factor coding genes were up-regulated, while 4 MYBs, 3 OFPs, 3 bHLHs, 2 AP2/EREBPs, 2 HBs etc. transcription factor coding genes were down-regulated. Taken together, $H_2S$ increased the productions in secondary metabolites and a variety of defensive compounds to improve plant development and abiotic resistance, and extend fruits postharvest shelf life by regulating the expression of AP2/EREBPs, WRKYs, MYBs, CABs, GRIP22, FERRITINs, TPSs, UGTs, and GHs etc.

RNA-seq Gene Profiling Reveals Transcriptional Changes in the Late Phase during Compatible Interaction between a Korean Soybean Cultivar (Glycine max cv. Kwangan) and Pseudomonas syringae pv. syringae B728a

  • Myoungsub, Kim;Dohui, Lee;Hyun Suk, Cho;Young-Soo, Chung;Hee Jin, Park;Ho Won, Jung
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.603-615
    • /
    • 2022
  • Soybean (Glycine max (L) Merr.) provides plant-derived proteins, soy vegetable oils, and various beneficial metabolites to humans and livestock. The importance of soybean is highly underlined, especially when carbon-negative sustainable agriculture is noticeable. However, many diseases by pests and pathogens threaten sustainable soybean production. Therefore, understanding molecular interaction between diverse cultivated varieties and pathogens is essential to developing disease-resistant soybean plants. Here, we established a pathosystem of the Korean domestic cultivar Kwangan against Pseudomonas syringae pv. syringae B728a. This bacterial strain caused apparent disease symptoms and grew well in trifoliate leaves of soybean plants. To examine the disease susceptibility of the cultivar, we analyzed transcriptional changes in soybean leaves on day 5 after P. syringae pv. syringae B728a infection. About 8,900 and 7,780 differentially expressed genes (DEGs) were identified in this study, and significant proportions of DEGs were engaged in various primary and secondary metabolisms. On the other hand, soybean orthologs to well-known plant immune-related genes, especially in plant hormone signal transduction, mitogen-activated protein kinase signaling, and plant-pathogen interaction, were mainly reduced in transcript levels at 5 days post inoculation. These findings present the feature of the compatible interaction between cultivar Kwangan and P. syringae pv. syringae B728a, as a hemibiotroph, at the late infection phase. Collectively, we propose that P. syringae pv. syringae B728a successfully inhibits plant immune response in susceptible plants and deregulates host metabolic processes for their colonization and proliferation, whereas host plants employ diverse metabolites to protect themselves against infection with the hemibiotrophic pathogen at the late infection phase.

Profiling of endogenous metabolites and changes in intestinal microbiota distribution after GEN-001 (Lactococcus lactis) administration

  • Min-Gul Kim;Suin Kim;Ji-Young Jeon;Seol Ju Moon;Yong-Geun Kwak;Joo Young Na;SeungHwan Lee;Kyung-Mi Park;Hyo-Jin Kim;Sang-Min Lee;Seo-Yeon Choi;Kwang-Hee Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.153-164
    • /
    • 2024
  • This study aimed to identify metabolic biomarkers and investigate changes in intestinal microbiota in the feces of healthy participants following administration of Lactococcus lactis GEN-001. GEN-001 is a single-strain L. lactis strain isolated from the gut of a healthy human volunteer. The study was conducted as a parallel, randomized, phase 1, open design trial. Twenty healthy Korean males were divided into five groups according to the GEN-001 dosage and dietary control. Groups A, B, C, and D1 received 1, 3, 6, and 9 GEN-001 capsules (1 × 1011 colony forming units), respectively, without dietary adjustment, whereas group D2 received 9 GEN-001 capsules with dietary adjustment. All groups received a single dose. Fecal samples were collected 2 days before GEN-001 administration to 7 days after for untargeted metabolomics and gut microbial metagenomic analyses; blood samples were collected simultaneously for immunogenicity analysis. Levels of phenylalanine, tyrosine, cholic acid, deoxycholic acid, and tryptophan were significantly increased at 5-6 days after GEN-001 administration when compared with predose levels. Compared with predose, the relative abundance (%) of Parabacteroides and Alistipes significantly decreased, whereas that of Lactobacillus and Lactococcus increased; Lactobacillus and tryptophan levels were negatively correlated. A single administration of GEN-001 shifted the gut microbiota in healthy volunteers to a more balanced state as evidenced by an increased abundance of beneficial bacteria, including Lactobacillus, and higher levels of the metabolites that have immunogenic properties.

Applied Analysis for Metabolic Profiling of Trace-level Amino Acid in Biological Fluid (생체시료 중 미량 아미노산 대사 프로필을 위한 분석법 응용)

  • Nam, Hyung Wook;Park, Song-Ja;Pyo, Hee Soo;Paeng, Ki Jung
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.349-357
    • /
    • 2003
  • The universality of low molecular weight metabolites (i.e. amino acids, steroid hormones) allows rapid and straightforward investigation of biochemistry of genetically un-characterized species. Thus in vivo metabolic profiling of amino acid in combination with multivariate data analysis (metabolomics) offers great potential in comparative biology. In this paper, amino acid profiles in biological fluid (media) were studied by using HPLC/FLD. HPLC procedure for amino acids require the formation of derivatives due to the low absorption of the free compounds. o-Phthalaldehyde (OPA) used in association with a thiol, such as 3-mercaptopropionic acid (3-MPA), is one of the most popular and sensitive reagents, which yield quickly fluorescent iso-indoles at room temperature. To improve unstability of OPA/3-MPA derivatization, we optimized injector programs for fixed injection times. Linear regressions for the standard curves were linear in the range 0.5 - 100.0 ppb, giving correlation coefficents above 0.99. The detection limit were 1.70 pmol(GLU) - 23.81 pmol(SER). It is practically useful when the amount of sample is very low on single cells.