• Title/Summary/Keyword: metabolites analysis

Search Result 656, Processing Time 0.029 seconds

Time-dependent changes of fruit metabolites studied by 1H NMR

  • Park, Sung Jean
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.3
    • /
    • pp.24-33
    • /
    • 2022
  • The browning phenomenon of fruits can be easily observed when fruits or vegetables (apples, pears, bananas, potatoes, etc.) are cut with a knife and the part turns brown. When this browning occurs, changes in taste, color, and nutrients usually are introduced. The cause of this browning phenomenon has been well studied for a long time, but these studies have mainly focused on preventing deterioration of processed foods during food processing or storage. Resultantly, there are few studies on how much changes in nutrients (saccharides, amino acids, fats, water-soluble low molecular weight ammonium ions, etc.) are caused by browning. The purpose of this study is to determine the change in nutrients during browning using apple as a model fruit. We conducted a comparative study on how much the nutrient fluctuations differ depending on the presence or absence of pretreatment such as the application of heat. All analysis was conducted using 1H NMR. The ANOVA analysis showed that the concentrations of 4 amino acids (alanine, asparagine, isoleucine, and valine), 3 types of sugars (fructose, glucose, and xylose), 1 type of organic acid (lactate) and choline were significantly increased in samples showing browning. In addition, the groups before and after browning were clearly separated using multivariate statistical analysis methods (PCA, PLS-DA), which was greatly contributed by two sugar components (fructose and glucose) present in high concentrations in apples.

The impact of cancer cachexia on gut microbiota composition and short-chain fatty acid metabolism in a murine model

  • Seung Min Jeong;Eun-Ju Jin;Shibo Wei;Ju-Hyeon Bae;Yosep Ji;Yunju Jo;Jee-Heon Jeong;Se Jin Im;Dongryeol Ryu
    • BMB Reports
    • /
    • v.56 no.7
    • /
    • pp.404-409
    • /
    • 2023
  • This study investigates the relationship between cancer cachexia and the gut microbiota, focusing on the influence of cancer on microbial composition. Lewis lung cancer cell allografts were used to induce cachexia in mice, and body and muscle weight changes were monitored. Fecal samples were collected for targeted metabolomic analysis for short chain fatty acids and microbiome analysis. The cachexia group exhibited lower alpha diversity and distinct beta diversity in gut microbiota, compared to the control group. Differential abundance analysis revealed higher Bifidobacterium and Romboutsia, but lower Streptococcus abundance in the cachexia group. Additionally, lower proportions of acetate and butyrate were observed in the cachexia group. The study observed that the impact of cancer cachexia on gut microbiota and their generated metabolites was significant, indicating a host-to-gut microbiota axis.

Simultaneous analysis for 2-thiothiazolidine-4-carboxilic acid and thiocarbamide using butanol extraction method (부타놀 추출법을 이용한 2-thiothiazolidine-4-carboxilic acid와 thiocarbamide의 동시정량에 관한 연구)

  • Lee, Sanghoi;Song, Jaesok;Yoon, youngshik;Kim, Chinyon;Won, Jonguk;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.1
    • /
    • pp.208-222
    • /
    • 2000
  • This study was conducted to supplement limit of previous study, The objectives of this study were to select optimal conditions of high performance liquid chromatography(HPLC) operation for detecting urinary 2-thiothiazolicline-4-carboxylic acid(TTCA) and thiocarbamide simultaneously, and to evaluate recovery rates for various liquid-liquid extration method of these metabolites, The results are as follows : 1. The urinary TTCA and thiocarbamide were separate sharply when flow rate is $0.7m{\ell}/min$, using a series $C_8$ and $C_{18}$ column, 50 mM $KH_2PO_4$ : acetonitrile (93.5 : 6.5) and pH 3.5 as a mobile phase. The retention time was TTCA, $12.07{\pm}0.11$(mean${\pm}$SD, n=06), thiocarbamide, $7.85{\pm}0.01$ (mean${\pm}$SD, n=6), respectively. The calibration curve for TTCA and thiocarbamide was linear within the range 0.05 to $30{\mu}g/m{\ell}$. 2. By the liquid-liquid extration, butanol extration with $(NH_4)_2$ as a salting-out reagent was used as a simultaneous extration method for these metabolites in acid state, and recovery rates of this method are urinary TTCA, $49.6{\pm}17.7$ (mean${\pm}$SD, n=16), thiocarbamide, $43,9{\pm}5.50$ (mean${\pm}$SD, n=16), respectively 3. The precision(pooled coefficients of variation for 4 concentration) of the urinary thiocarbamide analysis was 0.03754 by butanol liquid-liquid extraction with $(NH_4)_2$ as a salting-out reagent, and TTCA was 0.04082 by ethyl acetate liquid-liquid extration with $(NH_4)_2$ as a salting out reagent The above results show that the butanol liquid-liquid extraction with $(NH_4)_2$ as a salting-out reagent in acid state, and using a series $C_8$ and $C_{18}$ column, 50 mM $KH_2PO_4$ : acetonitrile (93.5 : 6.5) and pH 3.5 as a mobile phase are suitable for the analysis of urinary TTCA and thiocarbamide simultaneously. The detection limit of TTCA and thiocarbamide was about $0.17{\mu}g/m{\ell}$, $0.07{\mu}g/m{\ell}$.

  • PDF

The analysis of ethylene glycol and metabolites in biological specimens (생체시료에서 에틸렌 글리콜과 그 대사체 분석에 관한 연구)

  • Park, Seh-Youn;Kim, Yu-Na;Kim, Nam-Yee
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.69-77
    • /
    • 2011
  • Ethylene glycol (EG) is produced commercially in large amounts and is widely used as antifreeze or deicing solution for cars, boats, and aircraft. EG poisoning occurs in suicide attempts and infrequently, either intentionally through misuse or accidental as EG has a sweet taste. EG has in itself a low toxicity, but is in vivo broken down to higher toxic organic acids which are responsible for extensive cellular damage in various tissues caused principally by the metabolites glycolic acid and oxalic acid. The most conclusive analytical method of diagnosing EG poisoning is determination of EG concentration. However, victims are sometimes admitted at a late stage to hospitals or died during emergency treatment like a gastric lavage or found rotten dead, when blood EG concentrations are low or not detected. Therefore, in this study, the identification of EG was not only performed by gas chromatograpyc-mass spectrometry (GC-MS) following derivatization but also further toxicological analyses of metabolites, glycolic acid (GA) and oxalic acid (OA), were performed by ion chromatography in various biological specimens. A ranges of blood concentrations (3 cases) was $10\sim2,400\;{\mu}g/mL$ for EG, $224\sim1,164\;{\mu}g/mL$ for GA and ND $\sim40\;{\mu}g/mL$ for OA, respectively, In other biological specimens (liver, kidney, bile and pleural fluid), a range of concentrations (3 cases) was ND $\sim55,000\;{\mu}g/mL$ for EG, ND $\sim1,124\;{\mu}g/mL$ for GA and ND $\sim60\;{\mu}g/mL$ for OA, respectively. Liver and kidney tissues were recommended specimens including blood because OA, a final metabolite of EG, was identified large amounts in these despite no detectable EG caused by some therapy.

흐름주입분석 기술을 이용한 젖산의 온라인 모니터링

  • Kim, Jun-Hong;Lee, Jong-Il;Kim, Mi-Seon
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.241-243
    • /
    • 2001
  • On-line monitoring technique for the concentration of lactate by a FIA(Flow Injection Analysis) system was studied. The lactate oxidase(LOD) was immboilized on VA-Epoxy carrier and integrated into the FIA system. The pH, buffer flow rate and temperature for the LOD-FIA were optimized, and the effects of salts and metabolites dissolved in the sample on the activity of immobilized enzyme were investigated. The LOD-FIA has been applied to monitor the concentrations of lactate in a simulated bioprocess. The on-line monitoring data by the LOD-FIA agreed with the off-line data measured by a fluorescence spectroscopy well.

  • PDF

Concanamycin B, Active substance Against Phytophthora capsici Produced by Streptomyces neyagawaensis 38D10 Strain (Streptomyces neyagawaensis 38D10 균주가 생산하는 concanamycin B의 항고추역병 활성)

  • Kim, Chang-Jin;Lee, In-Kyoung;Yun, Bong-Sik;Yoo, Ick-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.322-328
    • /
    • 1993
  • During the screening of antifungal compounds from microbial secondary metabolites to control phytophthora blight of red pepper caused by Phytophthora capsici, a soil isolate, strain 38D10 was selected. Based on taxonomic studies, this strain was identified as Streptomyces neyagawaensis. The antifungal compound was purified from culture broth by HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, HPLC and identified as concanamycin B by UV. $^1H$-NMR, $^{13}C$-NMR, SIMS analysis. Concanamycin B has strong antifungal activity against some phytopathogenic fungi but not antivacterial activity and preventive value were 50% and 100% at 125ppm and 250ppm in pot assay.

  • PDF

Metabolic perturbation of an Hsp90 C-domain inhibitor in a lung cancer cell line, A549 studied by NMR-based chemometric analysis

  • Hur, Su-Jung;Lee, Hye-Won;Shin, Ai-Hyang;Park, Sung Jean
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.10-14
    • /
    • 2014
  • Hsp90 is a good drug target molecule that is involved in regulating various signaling pathway in normal cell and the role of Hsp90 is highly emphasized especially in cancer cells. Thus, much efforts for discovery and development of Hsp90 inhibitor have been continued and a few Hsp90 inhibitors targeting the N-terminal ATP binding site are being tested in the clinical trials. There are no metabolic signature molecules that can be used to evaluate the effect of Hsp90 inhibition. We previously found a potential C-domain binder named PPC1 that is a synthetic small molecule. Here we report the metabolomics study to find signature metabolites upon treatment of PPC1 compound in lung cancer cell line, A549 and discuss the potentiality of metabolomic approach for evaluation of hit compounds.

Mechanisms of Self-protection and Genes Coding for Antibiotic Biosynthesis, Particularly, in Microorganisms which Produce Antibiotic Inhibitors of Protein Synthesis (항생물질생산균(抗生物質生産菌)의 단백질합성계조해항생물질(蛋白質合性系阻害抗生物質)에 대한 자기내성기구(自己耐性機構)와 생합성유전자(生合成遺傳子))

  • Paik, Soon-Young;Sugiyama, Masanori;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.31 no.4
    • /
    • pp.371-375
    • /
    • 1988
  • Streptomycetes are attractive microorganisms for their production of various secondary metabolites such as antibiotics. Now, the development of gene manipulation in this microorganisms enables the cloning and analysis of the genes which coding for antibiotic biosynthesis and resistance to the drug. In this article, we reviewed the studies with respect to the mechanisms of self-protection and cloning of the genes cloning for antibiotic biosynthesis, particularly, in microorganisms which produce antibiotic inhibitors of protein synthesis.

  • PDF

NMR Metabolomic Profiles for Quality Control of Korean Green Tea (Camellia sinensis) Classified by the Plucking Season

  • Choi, Kwang-Ho;Park, Ji Su;Kim, Hyeon Su;Choi, Ye Hun;Jeon, Jun Hyeok;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.4
    • /
    • pp.119-125
    • /
    • 2017
  • The plucking season of green tea leaves is one of the important parameters that decide their metabolic diversity, quality, and prices. The effects of plucking sghlwleasons on green tea metabolites were investigated through metabolite profiling by $^1H$ NMR spectroscopy. The orthogonal projection on latent structure-discriminant analysis (OPLS-DA) showed clear discriminations of green teas by three different grades depending on plucking seasons: Ujeon, Sejak, and Jungjak. These results suggested that the nine peak groups could be used for diagnostics for identification of high quality Ujeon grade of green tea.

Inhibitory Effect of Melanogenesis by 5-Pentyl-2-Furaldehyde Isolated from Clitocybe sp.

  • Kim, Young-Hee;Choo, Soo-Jin;Ryoo, In-Ja;Kim, Bo-Yeon;Ahn, Jong-Seog;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.814-817
    • /
    • 2012
  • In the continued search for melanogenesis inhibitors from microbial metabolites, we found that the culture broth of Clitocybe sp. MKACC 53267 inhibited melanogenesis in B16F10 melanoma cells. The active component was purified by solvent extraction, silica gel chromatography, Sephadex LH-20 column chromatography, and finally by preparative HPLC. Its structure was determined as 5-pentyl-2-furaldehyde on the basis of the UV, NMR, and MS spectroscopic analysis. The 5-pentyl-2-furaldehyde potently inhibited melanogenesis in B16F10 cells with an $IC_{50}$ value of 8.4 ${\mu}g/ml$, without cytotoxicity.