• Title/Summary/Keyword: metabolites analysis

Search Result 656, Processing Time 0.023 seconds

Predicting the Concentration of Obesity-related Metabolites via Heart Rate Variability for Korean Premenopausal Obese Women: Multiple Regression Analysis (심박변이도를 통한 폐경 전 한국인 비만 여성의 비만 관련 대사체 농도 예측을 위한 회귀분석)

  • Kim, Jongyeon;Yang, Yo-Chan;Yi, Woon-Sup;Kim, Je-In;Maeng, Tae-Ho;Yoo, Duk-Joo;Shim, Jae-Woo;Cho, Woo-Young;Song, Mi-Yeon;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.4
    • /
    • pp.155-162
    • /
    • 2014
  • Objectives Advanced researches on the relationship between obesity and heart rate variability (HRV), heretofore, focused on characteristics of HRV depending on the state of obesity. However, the previous researches have not quantified predictive power of HRV toward the obesity-related variables, which is rather more meaningful for clinicians who regularly treat obese patients. Hence, we designed a research to investigate whether HRV could predict serum levels of obesity-related metabolites. Methods Ninety obese premenopausal women meeting the inclusion criteria were recruited. The HRV test, blood sampling, and measurement of physical traits were conducted. Multiple regression analysis of the measurement data was carried out, putting obesity-related metabolites (insulin, glucose, triglyceride, hs-CRP, HDL, LDL, total cholesterol) as outcome variables and the others as predictors. To select appropriate predictive variables, the Akaike's Information Criterion (AIC) was applied. Normality and homoskedasticity of residuals for each model were tested to identify if there were any violations of the regression analysis's basic assumption. Logarithm transformation was used for the values of the concentration of metabolites and the HRV. Results The regression model including Total Power (TP) value and BMI had significant predictive power for serum insulin concentration (F(2, 88)=835.7, p<0.001, $R^2=0.95$). The regression coefficient of ln (TP) was -0.1002. However, it was not sure if the HRV could predict concentrations of other metabolites. Conclusions The results suggest that the Total Power (TP) value of the HRV can predict the level of serum insulin. If the BMI could be assumed as being constant, when the TP value is multiplied by n, the predicted change of insulin could be drawn by multiplying $n^{-0.1002}$. The uncertainty of this model can be assumed as approximately 5%.

Identification of Key Metabolites Involved in Quantitative Growth of Pinus koraiensis trees (II) (잣나무 생장과 관련이 있는 주요 대사물질 인자(II))

  • Lee, Wi Young;Park, Eung-Jun;Kim, Hyun-Tae;Han, Sang Urk
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.2
    • /
    • pp.211-217
    • /
    • 2014
  • A metabolomic study using GC/MS analysis was conducted to identify key metabolic components regulating the growth of open-pollinated Pinus koraiensis families, which were grown for 29 years at three different locations. Among 110 individual metabolites identified, the contents of 62 metabolites were higher in the superior than in the inferior families (p<0.05), together with 22 metabolites, such as phosphoric acid, alanine, glycine, malic acid, and sucrose, being accumulated 1.5-fold higher in the superior families. In addition, 15 metabolites including alanine, malic acid, sucrose, d-turanose, and succinic acid showed positive correlation with the growth (p<0.01). Furthermore, the metabolites, of which contents were correlated with the growth but not significantly changed at different locations, were acetic acid, succinic acid, butanoic acid, glutamic acid, and inositol. Therefore we suggest that several metabolites selected in this study may be used as metabolic markers for quantitative growth trait in P. koraiensis.

Multiple Determinations of Trichloroethylene Metabolites in a Concurrent Biological Media using High Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry (HPLC-MS/MS를 이용한 트리클로로에틸렌 대사산물의 다중 분석법 확립)

  • Ahn, Youngah;Kho, Younglim;Lee, Seungho;Shin, Mi-Yeon;Jeon, Jung Dae;Kim, Sungkyoon
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.114-126
    • /
    • 2014
  • Objectives: We aimed to develop a measurement method of five metabolites of trichloroethylene (TCE) in a concurrent biological sample, e.g., trichloroacetic acid (TCA), dichloroacetic acid (DCA), S-(1,2-dichlorovinyl) glutathione (DCVG), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC) and to validate the method before application to pharmacokinetic study. Methods: TCE metabolites were simultaneously analyzed using high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS) with as little as 50 ${\mu}L$ of serum and urine. DCA, TCA and NAcDCVC were extracted with diethyl ether, while DCVC and DCVG were extracted by solid phase extraction. This method was validated according to the guidelines for bioanalytical method validation of the Korean National Institute of Toxicological Research. Then, we determined the five metabolites in five strains of mice at 24 hr after exposure to 1 g TCE /kg body weight. Results: The limits of detection for the five metabolites in biological samples ranged from 0.001 to 0.076 nmol/mL, which is comparable to or better than those previously reported. Most calibration curves showed good linearity ($R^2=0.99$), and between-batch variation was less than 20% expressing acceptable robustness and reproducibility. Using this method, we found TCA and DCA were detected in all test mice at 24 hr after the oral administration while NAcDCVC and DCVC were detected in some strains, which showed strain-dependent metabolism of TCE. Conclusions: The present method could provide robust and accurate measurements of major key metabolites of TCE in biological media, which allowed concurrent analysis of TCE metabolism for limited amounts of biospecimens.

A Study on 10 Metabolites Separated from DNA Adduce of Blood Lymphocytes in Rats Exposed Orally with 3,3-dichlorobenzidine(DCB) by GC/MS-SIM

  • Shin, Ueon-Sang;Lee, Jin-Heon
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.4
    • /
    • pp.6-11
    • /
    • 2002
  • 3.3'-Dichlorobenzidine(DCB) has be shown carcinogenic in several animals, and the development of non-invasive biomonitoring method in workers exposed with it is a very important subject. DNA adduct is a good biomarker for biomonitoring about carcinogens exposure, and lymphocytes is a good non-invasive samples. So we studied to analyze metabolites in blood lymphocytes of female Sprague-Dawley rats exposed orally with DCB(20, 30, and 40 mg/kg wt.) for 3 weeks. For analysis of them, we isolated DNA adducts from blood lymphocytes by using the enzymes method in /sup 32/P-postlabeling, and measured them by using gas chromatography/mass spectrometry-selected ion monitoring(GC/MS-SIM). 4-aminobiphenyl and phenanthrene-d/sub 10/ were added as internal standard for blank sample. Standard metabolites of DCB were synthesized with using pyridine and acetic acid which were promoter and controller in acetylation of DCB. And they were used for calibration curve. Our results showed two kinds of metabolites in DNA adducts of blood lymphocytes. They were N-acetyl 3,3'-dichlorobenzidine(acDCB) and N,N'-diacetyl 3,3'-dichiorobenzidine(di-acDCB ). They were combined with DNA at the same time as an acetyl of it was removed. So we measured DCB and acDCB for two kinds of metabolites in DNA adducts of blood lymphocytes. Our results showed the levels of DCB were 1.46∼2.26 times more than that of acDCB. And also the levels of metabolites in 20, 30 and 40 mg/kg wt. were gradually increased with going days from 1st to 3rd week. They are 1.66, 1.38 and 0.90 times in total metabolites, 1.76, 1.49 and 1.02 times in DCB, and 1.51, 1.22 and 1.28 times in acDCB. In conclusion, the results of this study showed DCB exposed to rats formed DNA adduct in blood lymphocytes after acetylated to N-acetyl 3.3'-dichloro benzidine(acDCB) and N,N'-diacetyl 3,3'-dichlorobenzidine(di-acDCB), and they could be analyzed by us ing gas chromatography/mass spectrometry-selected ion monitoring(GC/MS-SIM).

Effect of storage time and temperature on levels of phthalate metabolites and bisphenol A in urine

  • Guo, Ying;Wang, Lei;Kannan, Kurunthachalam
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Urine is a widely used matrix in biomonitoring studies on the assessment of human exposure to environmental chemicals such as phthalate esters and bisphenol A (BPA). In addition to the need to apply valid analytical techniques, assurance of specimen integrity during collection and storage is an important prerequisite for the presentation of accurate and precise analytical data. One of the common issues encountered in the analysis of non-persistent contaminants is whether shipping and storage temperature and time since collection have an effect on sample integrity. In this study, we investigated the stability of phthalate metabolites and BPA in spiked and unspiked urine samples stored at room temperature ($20^{\circ}C$) or at $-80^{\circ}C$ for up to 8 weeks. Concentrations of phthalate metabolites declined, on average, by 3% to 15%, depending on the compounds, and BPA declined by ~30% after 4 weeks of storage of spiked urine samples at $20^{\circ}C$. In a test of 30 unspiked urine samples stored at $20^{\circ}C$ and at $-80^{\circ}C$ for 8 weeks, the concentrations of phthalate metabolites and BPA decreased by up to 15% to 44%, depending on the compound and on the samples. It was found that the small reduction in phthalate concentrations observed in urine, varied depending on the samples. In a few urine samples, concentrations of phthalate metabolites and BPA did not decline even after storage at $20^{\circ}C$ for 8 weeks. We found a significant relationship between concentrations of target analytes in urine stored at $20^{\circ}C$ and at $-80^{\circ}C$ for 8 weeks. We estimated the half-lives of phthalate metabolites and BPA in urine stored at $20^{\circ}C$. The estimated half-life of monoethyl phthalate (mEP) and mono (2-ethyl-5-carboxyphentyl) phthalate (mECPP) in urine stored at $20^{\circ}C$ was over two years, of mono (2-ethyl-5-oxohexyl) phthalate (mEOHP) and monobenzyl phthalate (mBzP) was approximately one year, and of other phthalate metabolites was approximately 6 months. The estimated half-life of BPA in urine stored at $20^{\circ}C$ was approximately 3 months, which is much longer than that reported for aquatic ecosystems.

Comparison of Traditional and Commercial Vinegars Based on Metabolite Profiling and Antioxidant Activity

  • Jang, Yu Kyung;Lee, Mee Youn;Kim, Hyang Yeon;Lee, Sarah;Yeo, Soo Hwan;Baek, Seong Yeol;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.217-226
    • /
    • 2015
  • Metabolite profiles of seven commercial vinegars and two traditional vinegars were performed by gas chromatography time-of-flight mass spectrometry with multivariate statistical analysis. During alcohol fermentation, yeast, nuruk, and koji were used as sugars for nutrients and as fermentation substrates. Commercial and traditional vinegars were significantly separated in the principal component analysis and orthogonal partial least square discriminant analysis. Six sugars and sugar alcohols, three organic acids, and two other components were selected as different metabolites. Target analysis by ultra-performance liquid chromatography quadruple-time-of-flight mass spectrometry and liquid chromatography-ion trap-mass spectrometry/mass spectrometry were used to detect several metabolites having antioxidant activity, such as cyanidin-3-xylosylrutinoside, cyanidin-3-rutinoside, and quercetin, which were mainly detected in Rural Korean Black raspberry vinegar (RKB). These metabolites contributed to the highest antioxidant activity measured in RKB among the nine vinegars. This study revealed that MS-based metabolite profiling was useful in helping to understand the metabolite differences between commercial and traditional vinegars and to evaluate the association between active compounds of vinegar and antioxidant activity.

Discovery of Urinary Biomarkers in Patients with Breast Cancer Based on Metabolomics

  • Lee, Jeongae;Woo, Han Min;Kong, Gu;Nam, Seok Jin;Chung, Bong Chul
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.59-66
    • /
    • 2013
  • A metabolomics study was conducted to identify urinary biomarkers for breast cancer, using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), analyzed by principal components analysis (PCA) as well as a partial least squares-discriminant analysis (PLS-DA) for a metabolic pattern analysis. To find potential biomarkers, urine samples were collected from before- and after-mastectomy of breast cancer patients and healthy controls. Androgens, corticoids, estrogens, nucleosides, and polyols were quantitatively measured and urinary metabolic profiles were constructed through PCA and PLS-DA. The possible biomarkers were discriminated from quantified targeted metabolites with a metabolic pattern analysis and subsequent screening. We identified two biomarkers for breast cancer in urine, ${\beta}$-cortol and 5-methyl-2-deoxycytidine, which were categorized at significant levels in a student t-test (p-value < 0.05). The concentrations of these metabolites in breast cancer patients significantly increased relative to those of controls and patients after mastectomy. Biomarkers identified in this study were highly related to metabolites causing oxidative DNA damage in the endogenous metabolism. These biomarkers are not only useful for diagnostics and patient stratification but can be mapped on a biochemical chart to identify the corresponding enzyme for target identification via metabolomics.

Metabolic Changes of Phomopsis longicolla Fermentation and Its Effect on Antimicrobial Activity Against Xanthomonas oryzae

  • Choi, Jung Nam;Kim, Jiyoung;Ponnusamy, Kannan;Lim, Chaesung;Kim, Jeong Gu;Muthaiya, Maria John;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.177-183
    • /
    • 2013
  • Bacterial blight, an important and potentially destructive bacterial disease in rice caused by Xanthomonas oryzae pv. oryzae (Xoo), has recently developed resistance to the available antibiotics. In this study, mass spectrometry (MS)-based metabolite profiling and multivariate analysis were employed to investigate the correlation between timedependent metabolite changes and antimicrobial activities against Xoo over the course of Phomopsis longicolla S1B4 fermentation. Metabolites were clearly differentiated based on fermentation time into phase 1 (days 4-8) and phase 2 (days 10-20) in the principal component analysis (PCA) plot. The multivariate statistical analysis showed that the metabolites contributing significantly for phases 1 and 2 were deacetylphomoxanthone B, monodeacetylphomoxanthone B, fusaristatin A, and dicerandrols A, B, and C as identified by liquid chromatography-mass spectrometry (LC-MS), and dimethylglycine, isobutyric acid, pyruvic acid, ribofuranose, galactofuranose, fructose, arabinose, hexitol, myristic acid, and propylstearic acid were identified by gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling. The most significantly different secondary metabolites, especially deacetylphomoxanthone B, monodeacetylphomoxanthone B, and dicerandrol A, B and C, were positively correlated with antibacterial activity against Xoo during fermentation.

Discrimination of Floral Scents and Metabolites in Cut Flowers of Peony (Paeonia lactiflora Pall.) Cultivars

  • Ahn, Myung Suk;Park, Pue Hee;Kwon, Young Nam;Mekapogu, Manjulatha;Kim, Suk Weon;Jie, Eun Yee;Jeong, Jae Ah;Park, Jong Taek;Kwon, Oh Keun
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.641-651
    • /
    • 2018
  • Floral scents and metabolites from cut flowers of 14 peony cultivars (Paeonia lactiflora Pall.) were analyzed to discriminate different cultivars and to compare the Korean cultivar with the other cut peonies imported to Korea using electronic nose (E-nose) and Fourier transform infrared (FT-IR) spectroscopy combined with multivariate analysis, respectively. Principal component analysis (PCA) and discriminant function analysis (DFA) dendrogram of peony floral scents were not precisely same but there were 3 groups including same cultivars. PCA and partial least squares-discriminant analysis (PLS-DA) dendrograms of peony metabolites showed that different cut peony cultivars were clustered into two major groups including same cultivars. Fragrance pattern of Korean 'Taebaek' was classified to same group with 'Jubilee' on the PCA and DFA results and its metabolite pattern was clearly discriminated by the PCA and PLS-DA compared to the other cultivars. These results show that the 14 peony cut flowers could be discriminated corresponding to their chemical relationship and the metabolic profile of Korean 'Taebaek' has distinctive characteristics. Furthermore, we suggest that these results could be used as the preliminary data for breeding new cut peony cultivars and for improving the availability of Korean cut peony in cosmetic industry.

1H NMR-based metabolomic study of Cornus officinalis from different geographical origin

  • Jung, Young-Ae;Jung, Young-Sang;Hwang, Geum-Sook
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.2
    • /
    • pp.90-103
    • /
    • 2011
  • Cornus officinalis (Cornaceae) is primarily grown in Asian countries. The pericarp of C. officinalis (Corni Fructus) is a well-known traditional medicine with tonic, analgesic, and diuretic properties. We analyzed methanolic extracts of Corni Fructus (grown in Korea and China) by $^1H$ NMR spectroscopy. Metabolite profiling was performed to characterize the metabolic difference between different Corni Fructus origins (Korea or China). Principal components analysis revealed significant separation between Comus Fructus from different origins. The metabolites responsible for differences were identified using loading plots, coefficients plots, and variable influence on projection followed by t-tests. As a result, 16 metabolites were identified and quantified; tyrosine, acetate, sucrose, and malate differed the most between origins. These data suggest that NMR-based metabolomics can be used to identify differences between Corni Fructus samples obtained from different regions.