• 제목/요약/키워드: metabolic profiling

검색결과 135건 처리시간 0.029초

Metabolomic understanding of intrinsic physiology in Panax ginseng during whole growing seasons

  • Lee, Hyo-Jung;Jeong, Jaesik;Alves, Alexessander Couto;Han, Sung-Tai;In, Gyo;Kim, Eun-Hee;Jeong, Woo-Sik;Hong, Young-Shick
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.654-665
    • /
    • 2019
  • Background: Panax ginseng Meyer has widely been used as a traditional herbal medicine because of its diverse health benefits. Amounts of ginseng compounds, mainly ginsenosides, vary according to seasons, varieties, geographical regions, and age of ginseng plants. However, no study has comprehensively determined perturbations of various metabolites in ginseng plants including roots and leaves as they grow. Methods: Nuclear magnetic resonance ($^1H$ NMR)-based metabolomics was applied to better understand the metabolic physiology of ginseng plants and their association with climate through global profiling of ginseng metabolites in roots and leaves during whole growing periods. Results: The results revealed that all metabolites including carbohydrates, amino acids, organic acids, and ginsenosides in ginseng roots and leaves were clearly dependent on growing seasons from March to October. In particular, ginsenosides, arginine, sterols, fatty acids, and uracil diphosphate glucose-sugars were markedly synthesized from March until May, together with accelerated sucrose catabolism, possibly associated with climatic changes such as sun exposure time and rainfall. Conclusion: This study highlights the intrinsic metabolic characteristics of ginseng plants and their associations with climate changes during their growth. It provides important information not only for better understanding of the metabolic phenotype of ginseng but also for quality improvement of ginseng through modification of cultivation.

The effects of dietary self-monitoring intervention on anthropometric and metabolic changes via a mobile application or paper-based diary: a randomized trial

  • Taiyue Jin;Gyumin Kang;Sihan Song;Heejin Lee;Yang Chen;Sung-Eun Kim;Mal-Soon Shin;Youngja H Park;Jung Eun Lee
    • Nutrition Research and Practice
    • /
    • 제17권6호
    • /
    • pp.1238-1254
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Weight loss via a mobile application (App) or a paper-based diary (Paper) may confer favorable metabolic and anthropometric changes. SUBJECTS/METHODS: A randomized parallel trial was conducted among 57 adults whose body mass indices (BMIs) were 25 kg/m2 or greater. Participants randomly assigned to either the App group (n = 30) or the Paper group (n = 27) were advised to record their foods and supplements through App or Paper during the 12-week intervention period. Relative changes of anthropometries and biomarker levels were compared between the 2 intervention groups. Untargeted metabolic profiling was identified to discriminate metabolic profiles. RESULTS: Out of the 57 participants, 54 participants completed the trial. Changes in body weight and BMI were not significantly different between the 2 groups (P = 0.11). However, body fat and low-density lipoprotein (LDL)-cholesterol levels increased in the App group but decreased in the Paper group, and the difference was statistically significant (P = 0.03 for body fat and 0.02 for LDL-cholesterol). In the metabolomics analysis, decreases in methylglyoxal and (S)-malate in pyruvate metabolism and phosphatidylcholine (lecithin) in linoleic acid metabolism from pre- to post-intervention were observed in the Paper group. CONCLUSIONS: In the 12-week randomized parallel trial of weight loss through a App or a Paper, we found no significant difference in change in BMI or weight between the App and Paper groups, but improvement in body fatness and LDL-cholesterol levels only in the Paper group under the circumstances with minimal contact by dietitians or health care providers.

Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots

  • Jayakodi, Murukarthick;Lee, Sang-Choon;Park, Hyun-Seung;Jang, Woojong;Lee, Yun Sun;Choi, Beom-Soon;Nah, Gyoung Ju;Kim, Do-Soon;Natesan, Senthil;Sun, Chao;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제38권4호
    • /
    • pp.278-288
    • /
    • 2014
  • Background: Panax ginseng Meyer is a traditional medicinal plant famous for its strong therapeutic effects and serves as an important herbal medicine. To understand and manipulate genes involved in secondary metabolic pathways including ginsenosides, transcriptome profiling of P. ginseng is essential. Methods: RNA-seq analysis of adventitious roots of two P. ginseng cultivars, Chunpoong (CP) and Cheongsun (CS), was performed using the Illumina HiSeq platform. After transcripts were assembled, expression profiling was performed. Results: Assemblies were generated from ~85 million and ~77 million high-quality reads from CP and CS cultivars, respectively. A total of 35,527 and 27,716 transcripts were obtained from the CP and CS assemblies, respectively. Annotation of the transcriptomes showed that approximately 90% of the transcripts had significant matches in public databases.We identified several candidate genes involved in ginsenoside biosynthesis. In addition, a large number of transcripts (17%) with different gene ontology designations were uniquely detected in adventitious roots compared to normal ginseng roots. Conclusion: This study will provide a comprehensive insight into the transcriptome of ginseng adventitious roots, and a way for successful transcriptome analysis and profiling of resource plants with less genomic information. The transcriptome profiling data generated in this study are available in our newly created adventitious root transcriptome database (http://im-crop.snu.ac.kr/transdb/index.php) for public use.

식물대사체 연구의 현황과 전망 (Present and prospect of plant metabolomics)

  • 김석원;권용국;김종현;유장렬
    • Journal of Plant Biotechnology
    • /
    • 제37권1호
    • /
    • pp.12-24
    • /
    • 2010
  • 식물 대사체 (plant metabolomics) 연구는 식물 세포 및 조직에 존재하는 모든 대사산물의 시간적, 공간적 변화를 추적 조사함으로써 식물의 복잡한 생리 현상을 총체적으로 이해하는 연구이다. 이와 같은 식물 대사체 연구는 최근 개발이 이루어지고 있는 여러 오믹스 연구 분야의 하나로 시스템생물학의 한 분야이다. 식물 대사체 연구는 시료로부터 순수 화합물 또는 복합물을 정제하거나 또는 정제가 이루어지지 않은 혼합액으로부터 대사체 스펙트럼 정보를 확보하여 분석이 이루어지므로 추출액 제조 및 얻어진 대사체 데이터의 분석과정의 표준화가 필수적으로 이루어져야 한다. 이는 대사체 분석 결과의 해상도 및 재현성의 확보의 핵심 요소 이다. 식물 대사체 연구는 기능유전체학의 연구 수단은 물론 식물의 종, 품종, 더 나아가 GM 식물의 식별, 대사조절 기작 규명, 유용물질 생산, 식물의 외부 환경 스트레스 요인에 대한 다양한 생리적 반응 이해 등 다양한 연구 분야에서 활용이 이루어지고 있다. 최근 식물 대사체 연구는 모델식물(벼, 애기장대)의 유전체 정보와 연계하여 돌연변이주의 분석을 통해 유전자의 기능 정의 수단으로 활용되고 있다. 따라서 향후 유전체 정보와 대사체 정보의 연계를 통해 복잡한 대사경로 규명이나 다양한 생리 현상 해석 연구가 더욱 활발하게 진행될 것으로 전망된다.

Combining Information of Common Metabolites Reveals Global Differences between Colorectal Cancerous and Normal Tissues

  • Chae, Young-Kee;Kang, Woo-Young;Kim, Seong-Hwan;Joo, Jong-Eun;Han, Joon-Kil;Hong, Boo-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.379-383
    • /
    • 2010
  • Metabolites of colorectal cancer tissues from 12 patients were analyzed and compared with those of the normal tissues by two-dimensional NMR spectroscopy. NMR data were analyzed with the help of the metabolome database and the statistics software. Cancerous tissues showed significantly altered metabolic profiles as compared to the normal tissues. Among such metabolites, the concentrations of taurine, glutamate, choline were notably increased in the cancerous tissues of most patients, and those of glucose, malate, and glycerol were decreased. Changes in individual metabolites varied significantly from patient to patient, but the combination of such changes could be used to distinguish cancerous tissues from normal ones, which could be done by PCA analysis. The traditional chemometric analysis was also performed using AMIX software. By comparing those two results, the analysis via $^1H-^{13}C$ HSQC spectra proved to be more robust and effective in assessing and classifying global metabolic profiles of the colorectal tissues.

Highly Time-Resolved Metabolic Reprogramming toward Differential Levels of Phosphate in Chlamydomonas reinhardtii

  • Jang, Cheol-Ho;Lee, Gayeon;Park, Yong-Cheol;Kim, Kyoung Heon;Lee, Do Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1150-1156
    • /
    • 2017
  • Understanding phosphorus metabolism in photosynthetic organisms is important as it is closely associated with enhanced crop productivity and pollution management for natural ecosystems (e.g., algal blooming). Accordingly, we exploited highly time-resolved metabolic responses to different levels of phosphate deprivation in Chlamydomonas reinhardtii, a photosynthetic model organism. We conducted non-targeted primary metabolite profiling using gas-chromatography time-of-flight mass spectrometric analysis. Primarily, we systematically identified main contributors to degree-wise responses corresponding to the levels of phosphate deprivation. Additionally, we systematically characterized the metabolite sets specific to different phosphate conditions and their interactions with culture time. Among them were various types of fatty acids that were most dynamically modulated by the phosphate availability and culture time in addition to phosphorylated compounds.

Stress Adaptation of Escherichia coli as Monitored via Metabolites by Using Two-Dimensional NMR Spectroscopy

  • Chae, Young Kee;Kim, Seol Hyun
    • 한국자기공명학회논문지
    • /
    • 제21권3호
    • /
    • pp.102-108
    • /
    • 2017
  • Escherichia coli responds to ever-changing external and internal stresses by rapidly adjusting its physiology for better survival. This adjustment occurs at all levels including metabolites as well as mRNAs and proteins. Although there has been many reports describing E. coli's adaptation to various stresses regarding transcriptomics or proteomics, only a few investigations have been reported regarding this adaptation viewed from metabolites' perspective. We applied four different types of stresses at four different doses as imposed by NaCl, sorbitol, ethanol, and pH to investigate the similarities or differences among the stresses, and which stress causes the largest perturbation of the metabolite composition. We profiled the metabolites under such external stresses by using two-dimensional NMR spectroscopy and identified 39 metabolites including amino acids, sugars, organic acids, and nucleic acids. According to our statistical analysis, the osmotic stress caused by sorbitol differentiated itself from others, while NaCl showed the largest dose dependent metabolic perturbations. We hope this work will form a foundation on which an approach to a successful protein production is systematically provided by a favorable metabolic environment by imposing proper external stresses.

Proteomic Analysis of the Oxidative Stress Response Induced by Low-Dose Hydrogen Peroxide in Bacillus anthracis

  • Kim, Sang Hoon;Kim, Se Kye;Jung, Kyoung Hwa;Kim, Yun Ki;Hwang, Hyun Chul;Ryu, Sam Gon;Chai, Young Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권6호
    • /
    • pp.750-758
    • /
    • 2013
  • Anthrax is a bacterial disease caused by the aerobic spore-forming bacterium Bacillus anthracis, which is an important pathogen owing to its ability to be used as a terror agent. B. anthracis spores can escape phagocytosis and initiate the germination process even in antimicrobial conditions, such as oxidative stress. To analyze the oxidative stress response in B. anthracis and thereby learn how to prevent antimicrobial resistance, we performed protein expression profiling of B. anthracis strain HY1 treated with 0.3 mM hydrogen peroxide using a comparative proteomics-based approach. The results showed a total of 60 differentially expressed proteins; among them, 17 showed differences in expression over time. We observed time-dependent changes in the production of metabolic and repair/protection signaling proteins. These results will be useful for uncovering the metabolic pathways and protection mechanisms of the oxidative response in B. anthracis.

Mucin modifies microbial composition and improves metabolic functional potential of a synthetic gut microbial ecosystem

  • Mabwi, Humphrey A.;Komba, Erick V.G.;Mwaikono, Kilaza Samson;Hitayezu, Emmanuel;Mauliasari, Intan Rizki;Jin, Jong Beom;Pan, Cheol-Ho;Cha, Kwang Hyun
    • Journal of Applied Biological Chemistry
    • /
    • 제65권1호
    • /
    • pp.63-74
    • /
    • 2022
  • Microbial dysbiosis in the gut is associated with human diseases, and variations in mucus alter gut microbiota. Therefore, we explored the effects of mucin on the gut microbiota using a community of 19 synthetic gut microbial species. Cultivation of these species in modified Gifu anaerobic medium (GAM) supplemented with mucin before synthetic community assembly facilitated substantial growth of the Bacteroides, Akkermansia, and Clostridium genera. The results of 16S rRNA microbial relative abundance profiling revealed more of the beneficial microbes Collinsella, Bifidobacterium, Ruminococcus, and Lactobacillus. This increased acetate levels in the community cultivated with, rather than without (control), mucin. We identified differences in predicted cell function and metabolism between microbes cultivated in GAM with and without mucin. Mucin not only changed the composition of the gut microbial community, but also modulated metabolic functions, indicating that it could help to modulate microbial changes associated with human diseases.

Recognition of Transmembrane Protein 39A as a Tumor-Specific Marker in Brain Tumor

  • Park, Jisoo;Lee, Hyunji;Tran, Quangdon;Mun, Kisun;Kim, Dohoon;Hong, Youngeun;Kwon, So Hee;Brazil, Derek;Park, Jongsun;Kim, Seon-Hwan
    • Toxicological Research
    • /
    • 제33권1호
    • /
    • pp.63-69
    • /
    • 2017
  • Transmembrane protein 39A (TMEM39A) belongs to the TMEM39 family. TMEM39A gene is a susceptibility locus for multiple sclerosis. In addition, TMEM39A seems to be implicated in systemic lupus erythematosus. However, any possible involvement of TMEM39A in cancer remains largely unknown. In the present report, we provide evidence that TMEM39A may play a role in brain tumors. Western blotting using an anti-TMEM39A antibody indicated that TMEM39A was overexpressed in glioblastoma cell lines, including U87-MG and U251-MG. Deep-sequencing transcriptomic profiling of U87-MG and U251-MG cells revealed that TMEM39A transcripts were upregulated in such cells compared with those of the cerebral cortex. Confocal microscopic analysis of U251-MG cells stained with anti-TMEM39A antibody showed that TMEM39A was located in dot-like structures lying close to the nucleus. TMEM39A probably located to mitochondria or to endosomes. Immunohistochemical analysis of glioma tissue specimens indicated that TMEM39A was markedly upregulated in such samples. Bioinformatic analysis of the Rembrandt knowledge base also supported upregulation of TMEM39A mRNA levels in glioma patients. Together, the results afford strong evidence that TMEM39A is upregulated in glioma cell lines and glioma tissue specimens. Therefore, TMEM39A may serve as a novel diagnostic marker of, and a therapeutic target for, gliomas and other cancers.