• 제목/요약/키워드: metabolic inflammation

검색결과 211건 처리시간 0.029초

Longitudinal Relationships between Cigarette Smoking and Increases Risk for Incident Metabolic Syndrome: 16-year Follow-up of the Korean Genome and Epidemiology Study (KOGES)

  • Sang Shin Pyo
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.355-362
    • /
    • 2023
  • This study aimed to determine whether smoking affects the metabolic syndrome and its components through long-term follow-up. Of the 10,030 cohort subjects in the community-based Korean Genome and Epidemiology Study (KoGES) from 2001 to 2018, 2,848 people with metabolic syndrome and 4,854 people with insufficient data for analysis were excluded for this study. The study population comprised 2,328 individuals (1,123 men, 1,205 women) who were eligible for inclusion. The mean age of the participants was 49.2±7.5 years, and 21.9% were current smoker. In log rank test, current smoker had a significantly higher cumulative incidence of metabolic syndrome compared with non smoker (P<0.001). In the Cox proportional hazards model adjusted for key variables, metabolic syndrome (hazard ratio [HR] 1.57, P<0.001), high fasting glucose (HR 1.40, P<0.01), hypertriglyceridemia (HR 1.60, P<0.001), low HDL-cholesterol (HR, 1.30, P<0.01), and abdominal obesity (HR 1.32, P<0.01) in current smoker compared with non smoker were statistically significant, respectively, but not hypertension (HR 1.00, P>0.05). After adjustment for confounders, the time (P-time<0.001) and group (P-group<0.001) effects on metabolic syndrome score change were statistically significant. Furthermore, the interaction analysis of time and smoking group on the change in metabolic syndrome score was statistically significant (P-interaction<0.001). In long-term follow-up, smoking worsens metabolic syndrome.

담즙산과 대사질환 (Bile Acids and the Metabolic Disorders)

  • 노지혜;윤정현
    • 한국임상약학회지
    • /
    • 제28권4호
    • /
    • pp.273-278
    • /
    • 2018
  • Bile acids are major constituents of bile and known to help absorb dietary fat and fat-soluble vitamins in the gastrointestinal tract. In the past few decades, many studies have shown that bile acids not only play a role in fat digestion but also function as broad range of signal transduction hormones by binding to various receptors present in cell membranes or nuclei. Bile acid receptors are distributed in a wide range of organs and tissues in the human body. They perform multitudes of physiological functions with complex mechanisms. When bile acids bind to their receptors, they regulate fat and glucose metabolism in a tissue-specific way. In addition, bile acids are shown to inhibit inflammation and fibrosis in the liver. Considering the roles of bile acids as metabolic regulators, bile acids and their receptors can be very attractive targets in treating metabolic disorders. In the future, if roles of bile acids and their receptors are further clarified, they will be the novel target of drugs in the treatment of various metabolic diseases.

Metabolic influence on macrophage polarization and pathogenesis

  • Thapa, Bikash;Lee, Keunwook
    • BMB Reports
    • /
    • 제52권6호
    • /
    • pp.360-372
    • /
    • 2019
  • Macrophages play an essential role not only in mediating the first line of defense but also in maintaining tissue homeostasis. In response to extrinsic factors derived from a given tissue, macrophages activate different functional programs to produce polarized macrophage populations responsible for inducing inflammation against microbes, removing cellular debris, and tissue repair. However, accumulating evidence has revealed that macrophage polarization is pivotal in the pathophysiology of metabolic syndromes and cancer, as well as in infectious and autoimmune diseases. Recent advances in transcriptomic and metabolomic studies have highlighted the link between metabolic rewiring of macrophages and their functional plasticity. These findings imply that metabolic adaption to their surrounding microenvironment instructs activation of macrophages with functionally distinct phenotypes, which in turn probably leads to the pathogenesis of a wide spectrum of diseases. In this review, we have introduced emerging concepts in immunometabolism with focus on the impact on functional activation of macrophages. Furthermore, we have discussed the implication of macrophage plasticity on the pathogenesis of metabolic syndromes and cancer, and how the disease microenvironment manipulates macrophage metabolism with regard to the pathophysiology.

치자(梔子)가 JNK와 NF-kB를 통한 항산화와 항염증의 대사과정에 미치는 영향 (Effects of Gardeniae Fructus on the metabolic process of antioxidant and anti-inflammation by JNK and NF-kB)

  • 이상철;심성용;김연섭
    • 한방안이비인후피부과학회지
    • /
    • 제29권2호
    • /
    • pp.56-64
    • /
    • 2016
  • Objectives : The purpose of this study is to observe the effects of Gardeniae Fuctus(GF) on the metabolic process of antioxidant and anti-inflammation. Methods : 4-HNE was injected into PC-12 cell to cause oxidative stress-induced inflammatory response, and then a western blot was conducted to observe the expression of Nuclear Factor-kB (NF-kB) and c-Jun N-terminal kinase (JNK) protein that are important factors involved with inflammation. Results : 1. The Gardeniae Fuctus water extract 50 ㎍ and 100 ㎍ significantly suppressed the increase in JNK protein expression in PC-12 cell. 2. The Gardeniae Fuctus water extract 50 ㎍, 100 ㎍ and 200 ㎍ significantly suppressed the increase in NF-kB protein expression in PC-12 cell. Conclusion : These results suggest that the Gardeniae Fuctus water extract has antioxidative and anti-inflammatory activity through suppressing the activity of JNK and NF-kB.

Dietary Aloe Improves Insulin Sensitivity via the Suppression of Obesity-induced Inflammation in Obese Mice

  • Shin, Eun-Ju;Shim, Kyu-Suk;Kong, Hyun-Seok;Lee, Sung-Won;Shin, Seul-Mee;Kwon, Jeung-Hak;Jo, Tae-Hyung;Park, Young-In;Lee, Chong-Kil;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • 제11권1호
    • /
    • pp.59-67
    • /
    • 2011
  • Background: Insulin resistance is an integral feature of metabolic syndromes, including obesity, hyperglycemia, and hyperlipidemia. In this study, we evaluated whether the aloe component could reduce obesity-induced inflammation and the occurrence of metabolic disorders such as blood glucose and insulin resistance. Methods: Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results: Aloe QDM lowered fasting blood glucose and plasma insulin compared with HFD. Obesity-induced inflammatory cytokine (IL-$1{\beta}$, -6, -12, TNF-${\alpha}$) and chemokine (CX3CL1, CCL5) mRNA and protein were decreased markedly, as was macrophage infiltration and hepatic triglycerides by Aloe QDM. At the same time, Aloe QDM decreased the mRNA and protein of $PPAR{\gamma}/LXR{\alpha}$ and $11{\beta}$-HSD1 both in the liver and WAT. Conclusion: Dietary aloe formula reduces obesity-induced glucose tolerance not only by suppressing inflammatory responses but also by inducing anti-inflammatory cytokines in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The effect of Aloe QDM complex in the WAT and liver are related to its dual action on $PPAR{\gamma}$ and $11{\beta}$-HSD1 ression and its use as a nutritional intervention against T2D and obesity-related inflammation is suggested.

Modulation of senoinflammation by calorie restriction based on biochemical and Omics big data analysis

  • Bang, EunJin;Lee, Bonggi;Noh, Sang-Gyun;Kim, Dae Hyun;Jung, Hee Jin;Ha, Sugyeong;Yu, Byung Pal;Chung, Hae Young
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.56-63
    • /
    • 2019
  • Aging is a complex and progressive process characterized by physiological and functional decline with time that increases susceptibility to diseases. Aged-related functional change is accompanied by a low-grade, unresolved chronic inflammation as a major underlying mechanism. In order to explain aging in the context of chronic inflammation, a new integrative concept on age-related chronic inflammation is necessary that encompasses much broader and wider characteristics of cells, tissues, organs, systems, and interactions between immune and non-immune cells, metabolic and non-metabolic organs. We have previously proposed a novel concept of senescent (seno)-inflammation and provided its frameworks. This review summarizes senoinflammation concept and additionally elaborates modulation of senoinflammation by calorie restriction (CR). Based on aging and CR studies and systems-biological analysis of Omics big data, we observed that senescence associated secretory phenotype (SASP) primarily composed of cytokines and chemokines was notably upregulated during aging whereas CR suppressed them. This result further strengthens the novel concept of senoinflammation in aging process. Collectively, such evidence of senoinflammation and modulatory role of CR provide insights into aging mechanism and potential interventions, thereby promoting healthy longevity.

지방조직과 면역체계의 상호작용 및 관련 염증물질에 관한 고찰 (The Interaction of Adipose Tissue with Immune System and Related Inflammatory Molecules)

  • 김유희;최봉혁;도명술
    • IMMUNE NETWORK
    • /
    • 제6권4호
    • /
    • pp.169-178
    • /
    • 2006
  • Background: Adipose tissues were initially introduced as energy storages, but recently they have become famous as an endocrine organ which produces and secretes various kinds of molecules to make physiologic and metabolic changes in human body. It has been studied that these molecules are secreted in abundance as the adipose tissue becomes bigger along with obesity. Furthermore, it has been found that they are mediating systemic inflammation and generation of metabolic diseases such as type 2 diabetes and atherosclerosis. On the basis of these, we studied previous papers which have been researched about the interaction between preadipocytes and macrophages, adipose tissues and lymph nodes, and adipose tissue secreting molecules. Results: Firstly, preadipocytes and macrophages are expressing similar transcriptomes and proteins, and preadipocytes can be converted to mature macrophages which have phagocytic activity. Moreover, the monocytes, which initially located in the bone marrow, are filtrated to the adipose tissue by monocyte chemotatic protein-1 and are matured to macrophages by colony stimulating factor-1. Secondly, adipose tissues and their associated lymph nodes are interacting each other in terms of energy efficiency. Lymph nodes promote lipolysis in adipose tissues, and polyunsaturated fatty acids in adipocytes become energy sources for dendritic cells. Lastly, adipose tissues produce and secrete proinflammatory molecules such as leptin, adiponectin, TNF-${\alpha}$, IL-6, and acute phase proteins, which induce the inflammation and potentially generate metabolic diseases. Conclusion: According to these, we can link adipose tissues to inflammation, but we need to affirm the actual levels and roles of adipose tissue-derived proinflammatory molecules in human body.

Porphyromonas gingivalis exacerbates the progression of fatty liver disease via CD36-PPARγ pathway

  • Ahn, Ji-Su;Yang, Ji Won;Oh, Su-Jeong;Shin, Ye Young;Kang, Min-Jung;Park, Hae Ryoun;Seo, Yoojin;Kim, Hyung-Sik
    • BMB Reports
    • /
    • 제54권6호
    • /
    • pp.323-328
    • /
    • 2021
  • Periodontal diseases have been reported to have a multidirectional association with metabolic disorders. We sought to investigate the correlation between periodontitis and diabetes or fatty liver disease using HFD-fed obese mice inoculated with P. gingivalis. Body weight, alveolar bone loss, serological biochemistry, and glucose level were determined to evaluate the pathophysiology of periodontitis and diabetes. For the evaluation of fatty liver disease, hepatic nonalcoholic steatohepatitis (NASH) was assessed by scoring steatosis, inflammation, hepatocyte ballooning and the crucial signaling pathways involved in liver metabolism were analyzed. The C-reactive protein (CRP) level and NASH score in P. gingivalis-infected obese mice were significantly elevated. Particularly, the extensive lobular inflammation was observed in the liver of obese mice infected with P. gingivalis. Moreover, the expression of metabolic regulatory factors, including peroxisome proliferator-activated receptor γ (Pparγ) and the fatty acid transporter Cd36, was up-regulated in the liver of P. gingivalis-infected obese mice. However, inoculation of P. gingivalis had no significant influence on glucose homeostasis, insulin resistance, and hepatic mTOR/AMPK signaling. In conclusion, our results indicate that P. gingivalis can induce the progression of fatty liver disease in HFD-fed mice through the upregulation of CD36-PPARγ axis.

만성 저등급 염증이론을 바탕으로 한 건선의 한약치료에 대한 문헌고찰 (Literature Review on Herbal Medicine Treatment of Psoriasis Based on Chronic Low-grade Inflammation Theory)

  • 정창운;전선우;조희근
    • 한방안이비인후피부과학회지
    • /
    • 제31권4호
    • /
    • pp.22-30
    • /
    • 2018
  • Objectives : The aim of this study is to investigate the relationship between chronic low grade inflammation theory, psoriasis, and herbal medicine. Methods : We reviewed recent studies on the relationship between chronic low-grade inflammation, psoriasis, and herbal medicine through Pubmed. Results : The pathological basis for psoriasis is the action of inflammatory mediators by the activation of the immune response, which can be a cause of various cardiovascular, metabolic and psychological symptoms of psoriasis patients, in addition to skin lesions. The herbal medicines improve these inflammatory conditions and improve local lesions through herbal medicine such as Qingdai, which have a strong inhibitory effect on IL-17,22 production. Conclusions : Herbal medicines used in psoriasis are thought to be effective not only for the improvement of local psoriasis lesions through anti-inflammatory effect but also for the improvement of systemic inflammation associated with chronic low grade inflammation.

The Impact of Organokines on Insulin Resistance, Inflammation, and Atherosclerosis

  • Choi, Kyung Mook
    • Endocrinology and Metabolism
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2016
  • Immoderate energy intake, a sedentary lifestyle, and aging have contributed to the increased prevalence of obesity, sarcopenia, metabolic syndrome, type 2 diabetes, and cardiovascular disease. There is an urgent need for the development of novel pharmacological interventions that can target excessive fat accumulation and decreased muscle mass and/or strength. Adipokines, bioactive molecules derived from adipose tissue, are involved in the regulation of appetite and satiety, inflammation, energy expenditure, insulin resistance and secretion, glucose and lipid metabolism, and atherosclerosis. Recently, there is emerging evidence that skeletal muscle and the liver also function as endocrine organs that secrete myokines and hepatokines, respectively. Novel discoveries and research into these organokines (adipokines, myokines, and hepatokines) may lead to the development of promising biomarkers and therapeutics for cardiometabolic disease. In this review, I summarize recent data on these organokines and focus on the role of adipokines, myokines, and hepatokines in the regulation of insulin resistance, inflammation, and atherosclerosis.