• 제목/요약/키워드: metabolic image

검색결과 60건 처리시간 0.021초

18F-FDG PET/CT 융합영상에서 영상 재구성 차이에 의한 MTV (Metabolic tumor volume) 평가 (Evaluation of metabolic tumor volume using different image reconstruction on 18F-FDG PET/CT fusion image)

  • 윤석환
    • 한국융합학회논문지
    • /
    • 제9권1호
    • /
    • pp.433-440
    • /
    • 2018
  • FDG PET 영상에서 MTV는 종양의 전체 대사정도를 반영하여 종양의 체적을 나타낸다. 하지만 MTV는 영상재구성의 영향을 받게 된다. 본 연구의 목적은 팬텀실험을 통하여 영상재구성에 따라 SUVmax의 역치 값을 달리하여 실제 체적과 MTV의 상관관계를 평가해보고자 하였다. NEMA IEC Body 팬텀에 $^{18}F-FDG$를 구와 배후 방사능의 비율(4:1, 8:1, 10:1, 20:1)이 되도록 주입 후 영상을 획득하였다. 획득한 영상에 4가지 방법(OSEM3D, OSEM3D+PSF, OSEM3D+TOF, OSEM3D+TOF+PSF)으로 영상을 재구성한 후 다양한 SUVmax 역치 값을 적용하여 MTV의 변화를 비교해 보았다. 전반적으로 SUVmax 역치 값이 증가 할수록 MTV가 감소하였으며, 구와 배후방사능 비율이 증가할수록 동일한 SUVmax 역치 값에서 MTV가 감소하였다. PSF와 TOF+PSF재구성영상에서 40% 역치 값, OSEM3D와 TOF 재구성 영상에서는 45% 역치 값을 적용하였을 때 팬텀의 실제체적과 MTV의 높은 상관관계를 보였다. 이번 연구결과를 통하여 영상재구성에 따라 MTV 측정에 기초적인 자료로 제공되어 질 것으로 사료된다.

Tissue Microarrays in Biomedical Research

  • Chung, Joon-Yong;Kim, Nari;Joo, Hyun;Youm, Jae-Boum;Park, Won-Sun;Lee, Sang-Kyoung;Warda, Mohamad;Han, Jin
    • Bioinformatics and Biosystems
    • /
    • 제1권1호
    • /
    • pp.28-37
    • /
    • 2006
  • Recent studies in molecular biology and proteomics have identified a significant number of novel diagnostic, prognostic, and therapeutic disease markers. However, validation of these markers in clinical specimens with traditional histopathological techniques involves low throughput and is time consuming and labor intensive. Tissue microarrays (TMAs) offer a means of combining tens to hundreds of specimens of tissue onto a single slide for simultaneous analysis. This capability is particularly pertinent in the field of cancer for target verification of data obtained from cDNA micro arrays and protein expression profiling of tissues, as well as in epidemiology-based investigations using histochemical/immunohistochemical staining or in situ hybridization. In combination with automated image analysis, TMA technology can be used in the global cellular network analysis of tissues. In particular, this potential has generated much excitement in cardiovascular disease research. The following review discusses recent advances in the construction and application of TMAs and the opportunity for developing novel, highly sensitive diagnostic tools for the early detection of cardiovascular disease.

  • PDF

재실자 활동량 산출을 위한 딥러닝 기반 선행연구 동향 (Research Trends for the Deep Learning-based Metabolic Rate Calculation)

  • 박보랑;최은지;이효은;김태원;문진우
    • KIEAE Journal
    • /
    • 제17권5호
    • /
    • pp.95-100
    • /
    • 2017
  • Purpose: The purpose of this study is to investigate the prior art based on deep learning to objectively calculate the metabolic rate which is the subjective factor for the PMV optimum control and to make a plan for future research based on this study. Methods: For this purpose, the theoretical and technical review and applicability analysis were conducted through various documents and data both in domestic and foreign. Results: As a result of the prior art research, the machine learning model of artificial neural network and deep learning has been used in various fields such as speech recognition, scene recognition, and image restoration. As a representative case, OpenCV Background Subtraction is a technique to separate backgrounds from objects or people. PASCAL VOC and ILSVRC are surveyed as representative technologies that can recognize people, objects, and backgrounds. Based on the results of previous researches on deep learning based on metabolic rate for occupational metabolic rate, it was found out that basic technology applicable to occupational metabolic rate calculation technology to be developed in future researches. It is considered that the study on the development of the activity quantity calculation model with high accuracy will be done.

4D RT에서 PET/CT Image를 이용한 Metabolic Target Volume 적용의 유용성 평가 (Evaluation of the Feasibility of Applying Metabolic Target Volume in 4D RT Using PET/CT Image)

  • 김창욱;천금성;허경훈;김연실;장홍석;정원균;;서태석
    • 한국의학물리학회지:의학물리
    • /
    • 제21권2호
    • /
    • pp.174-182
    • /
    • 2010
  • 본 연구는 호흡 정보를 갖고 있는 PET 영상의 표준섭취계수(SUV: standard uptake value)를 이용하여 보다 정확하고 편리한 호흡동조 방사선치료의 metabolic target volume (MTV) 적용에 대한 유용성을 평가하고자 하였다. 평가를 위해 4D 팬텀에 임의의 인공산물을 만들어 PET 영상을 획득하였으며, 최대 SUV를 기준으로 임의로 설정한 50%, 30%, 그리고 5%의 SUV에서의 VOIs (Volumes Of Interest)와 호흡동조 방사선치료를 위한 4D-CT를 통해 획득한 호흡위상백분율에서 설정한 GTV (Gross Target Volume)을 비교하였다. 4D-CT를 통해 얻은 총합 GTV와 PET 영상의 30% SUV로 얻은 VOI와의 비교는 50%의 SUV로 얻은 VOI의 비교 결과보다 종(Longitudinal) 방향에서의 오차가 상당히 감소되었으며 4D 총합 CTV와 가장 일치하는 PET 영상은 5% SUV로 얻은 VOI로 관찰되었다. 4D PET/CT에서 전체 호흡의 25% 흡기에서 25% 호기까지 호흡위상백분율 영상의 30% SUV로 얻은 VOI는 IGRT (Image-guided radiation therapy)에 적용되는 4D-CT의 동일한 호흡위상백분율 영상에서 설정한 GTV와 비교한 결과, 최대 0.5 cm 이하로 잘 일치하였으며 4D PET의 5% SUV로 얻은 VOI의 경우 모든 방향에서 잘 일치하였다. 따라서 IGRT의 MTV 적용에 있어서 일반 PET 영상의 이용보다 4D PET 영상의 적용이 더 유용함을 보였다. 본 연구결과 현재 핵의학과에서 인체종양의 VOI를 30% SUV로 권고하고 있지만 30% 이하의 주변 SUV와 구분되는 최소 SUV를 선택해 적용한다면, 더욱 유용한 MTV 적용이 될 것으로 판단된다.

개인용 컴퓨터를 이용한 기능 유관성 관상동맥 협착증의 삼차원 심장스펙트 사진과 64채널 전산화 단층 혈관촬영사진과의 융합 (Fusion of 3D Cardiac SPECT and 64-Channel-CT Angiography Using Personal Computer in Functionally Relevant Coronary Artery Stenosis)

  • 박용휘
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권3호
    • /
    • pp.252-254
    • /
    • 2007
  • Image fusion is fast catching attention as Wagner pointed out in his 2006 version of the recent progress and development presented at the annual meeting of Society of Nuclear Medicine. Prototypical fusion of bone scan and radiograph was already attempted at in 1961 when Fleming et al. published an article on strontium-85 bone scan. They simply superimposed dot scan on radiograph enabling simultaneous assessment of altered bone metabolism and local bone anatomy. Indeed the parallel reading of images of bone scan and radiography, CT, MRI or ultrasonography has been practiced in nuclear medicine long since. It is fortunate that recent development of computer science and technology along with the availability of refined CT and SPECT machines has permitted us to open a new avenue to digitally produce precise fusion image so that they can readily be read, exchanged and disseminated using internet. Ten years ago fusion was performed using Bresstrahlung SPECT/CT and it is now achievable by PET/CT and SPECT/CT software and SPECT/CT hardware. The merit of image fusion is its feasibility of reliable assessment of morphological and metabolic change. It is now applicable not only to stationary organs such as brain and skeleton but also to moving organs such as the heart, lung and stomach. Recently, we could create useful fusion image of cardiac SPECT and 64-channel CT angiograph. The former provided myocardial metabolic profile and the latter vascular narrowing in two patients with coronary artery stenosis and myocardial ischemia. Arterial stenosis was severe in Case 1 and mild in Case 2.

Sparse 표현을 이용한 X선 흡수 영상 개선 (X-ray Absorptiometry Image Enhancement using Sparse Representation)

  • 김형일;엄원용;노용만
    • 한국멀티미디어학회논문지
    • /
    • 제15권10호
    • /
    • pp.1205-1211
    • /
    • 2012
  • 대사성 골 질환인 골다공증(Osteoporosis)의 조기 진단을 위해 X 선 영상에서 골 밀도를 측정하는 방법이 최근 연구되고 있다. 골 밀도는 X 선 영상에서 뼈가 분리되고, 분리된 영역에서의 픽셀에 의해 BMD가 측정되는데, 개선된 영상에서의 정밀한 뼈 추출이 주요한 요소이므로 X 선 영상의 개선은 골다공증의 조기 진단을 위해 필수적이다. 본 논문에서는 sparse 표현을 도입하여 다중(multiple) 잡음을 갖는 X 선 영상을 개선시키는 방법을 제안한다. 실험을 통해 제안한 방법의 결과가 기존의 방법인 웨이블릿 BayesShrink 잡음 제거 방법 및 일반적 sparse 표현 모델의 잡음 제거 방법의 결과에 비해 개선됨을 CNR(Contrast to Noise Ratio) 및 cut-view를 통해 확인하였다.

종양 영상을 위한 PET 방사성의약품 (PET Radiopharmaceuticals for Tumor Imaging)

  • 최연성
    • 대한핵의학회지
    • /
    • 제36권1호
    • /
    • pp.8-18
    • /
    • 2002
  • Early and accurate diagnosis of tumors using positron omission tomography (PET) has been the focus of considerable interest due to its high metastasis and mortality rates at late detection. PET radiopharmaceuticals-which exhibit a high tumor-to-background uptake ratio, and appropriate metabolic characteristics, and pharmacokinetics-are attractive tools for tumor imaging. Tumor imaging by these radiopharmaceuticals are based on metabolic and receptor imaging. The former is based on accelerated metabolism in tumor tissue compared to normal tissue and the rate roughly corresponding to the rate of growth of tumors. Radiopharmaceuticals for this purpose include radiolabeled sugars, amino acids, and nucleosides which detect increased glucose utilization, protein synthesis, and DNA synthesis, respectively. Tumor receptor imaging is based on the proliferation of tumor cells regulated by many hormones and growth factors, which bind to the corresponding receptors and exhibit the biological responses Radiopharmaceuticals used to image the tumor receptor systems may be ligands for the specific receptors and antibodies for the growth factor receptors. Some antitumor agents have been labeled with radionuclides and used to study in vivo biodistribution and pharmacokinetics in humans. This overview describes typical PET radiopharmaceuticals used for tumor imaging based on their uptake mechanisms.

Representation Techniques for 4-Dimensional MR Images

  • Homma, Kazuhiro;Takenaka, Kenji;Nakai, Yoshihiko;Hirose, Takeshi
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.429-431
    • /
    • 2002
  • Metabolic analysis of biological tissues, the interventional radiology in MRT (Magnetic Resonance Treatment) and for clinical diagnoses, representation of 4-Dimensional (4D) structural information (x,y,z,t) of biological tissues is required. This paper discusses image representation techniques for those 4D MR Images. We have proposed an image reconstruction method for ultra-fast 3D MRI. It is based on image interpolation and prediction of un-acquired pictorial data in both of the real and the k-space (the acquisition domain in MRI). A 4D MR image is reconstructed from only two 3D MR images and acquired a few echo signals that are optimized by prediction of the tissue motion. This prediction can be done by the phase of acquired echo signal is proportioned to the tissue motion. On the other hand, reconstructed 4D MR images are represented as a 3D-movie by using computer graphics techniques. Rendered tissue surfaces and/or ROIs are displayed on a CRT monitor. It is represented in an arbitrary plane and/or rendered surface with their motion. As examples of the proposed representation techniques, the finger and the lung motion of healthy volunteers are demonstrated.

  • PDF

입원한 조현병 환자의 신체이미지 왜곡 (Body Image Distortion among Inpatients with Schizophrenia)

  • 김성진;문석우;김대호
    • 생물정신의학
    • /
    • 제19권4호
    • /
    • pp.211-218
    • /
    • 2012
  • Objectives Body image distortion is found in eating disorder and obesity and there are some evidence that schizophrenia is associated with body image distortion. This study sought to find whether schizophrenic patients report more body image distortion than healthy individuals and whether it is related with symptomatology. Methods A total of 88 inpatients with schizophrenia and 88 healthy controls were recruited. Weight, height, and body image accuracy were assessed in all participants, and assessment of mood, psychotic symptom severity and self-esteem, and personal and social performance scale were conducted. Results The patients with schizophrenia had higher Body Mass Index (p < 0. 001) and underestimated their body size more than controls (26.14% vs. 5.13%, p < 0.001). Multiple regression analysis showed that lower depressive symptoms and higher scores of general psychopathology predicted underestimation of body size. Conclusion Weight gain and metabolic syndrome are common adverse events of pharmacological treatment of schizophrenia. Thus, underestimation of body size among patients with schizophrenia may interfere with effort to lose weight or seek weight reduction programs. Clinicians need to consider possible unterestimation of underestimation of body size in patients whose general symptomatology is severe.

A Computer-aided Design Tool with Semiautomatic Image-Processing Features for Visualizing Biological Pathways

  • Ham, Sung-Il;Yang, San-Duk;Thong, Chin-Ting;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • 제7권3호
    • /
    • pp.168-170
    • /
    • 2009
  • The explosion in biological data resulting from high-throughput experiments requires new software tools to manipulate and display pathways in a way that can integrate disparate sources of information. A visual Java-based CAD tool for drawing and annotating biological pathways with semiautomatic image-processing features is described in this paper. The result of the image-editing process is an XML file for the appropriate links. This tool integrates the pathway images and XML file sources. The system has facilities for linking graphical objects to external databases and is capable of reproducing existing visual representations of pathway maps.