• Title/Summary/Keyword: metabolic energy

Search Result 695, Processing Time 0.025 seconds

Co-Localization of GABA Shunt Enzymes for the Efficient Production of Gamma-Aminobutyric Acid via GABA Shunt Pathway in Escherichia coli

  • Pham, Van Dung;Somasundaram, Sivachandiran;Park, Si Jae;Lee, Seung Hwan;Hong, Soon Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.710-716
    • /
    • 2016
  • Gamma-aminobutyric acid (GABA) is a non-protein amino acid, which is an important inhibitor of neurotransmission in the human brain. GABA is also used as the precursor of biopolymer Nylon-4 production. In this study, the carbon flux from the tricarboxylic acid cycle was directed to the GABA shunt pathway for the production of GABA from glucose. The GABA shunt enzymes succinate-semialdehyde dehydrogenase (GabD) and GABA aminotransferase (GabT) were co-localized along with the GABA transporter (GadC) by using a synthetic scaffold complex. The co-localized enzyme scaffold complex produced 0.71 g/l of GABA from 10 g/l of glucose. Inactivation of competing metabolic pathways in mutant E. coli strains XBM1 and XBM6 increased GABA production 13% to reach 0.80 g/l GABA by the enzymes co-localized and expressed in the mutant strains. The recombinant E. coli system developed in this study demonstrated the possibility of the pathway of the GABA shunt as a novel GABA production pathway.

Crystal Structure and Biochemical Characterization of Xylose Isomerase from Piromyces sp. E2

  • Son, Hyeoncheol Francis;Lee, Sun-Mi;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.571-578
    • /
    • 2018
  • Biofuel production using lignocellulosic biomass is gaining attention because it can be substituted for fossil fuels without competing with edible resources. However, because Saccharomyces cerevisiae does not have a ${\text\tiny{D}}$-xylose metabolic pathway, oxidoreductase or isomerase pathways must be introduced to utilize ${\text\tiny{D}}$-xylose from lignocellulosic biomass in S. cerevisiae. To elucidate the biochemical properties of xylose isomerase (XI) from Piromyces sp. E2 (PsXI), we determine its crystal structure in complex with substrate mimic glycerol. An amino-acid sequence comparison with other reported XIs and relative activity measurements using five kinds of divalent metal ions confirmed that PsXI belongs to class II XIs. Moreover kinetic analysis of PsXI was also performed using $Mn^{2+}$, the preferred divalent metal ion for PsXI. In addition, the substrate-binding mode of PsXI could be predicted with the substrate mimic glycerol bound to the active site. These studies may provide structural information to enhance ${\text\tiny{D}}$-xylose utilization for biofuel production.

Effects of Sodium Restriction and Potassium Supplement on Aldosterone Secretion Rate In the Normal Korean (한국인의 Aldosterone 분비율에 미치는 Na 섭취제한 및 K 투여의 영향)

  • Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.10 no.2
    • /
    • pp.23-28
    • /
    • 1976
  • Author have already reported that urinary aldosterone excretion of the Korean who usually eat high sodium diet is significantly lower comparing with the American, although the plasma aldosterone concentration is identical in the former with that of the latter. Measurement of urinary aldosterone excretion and Plasma concentration only is insufficient to establish the pressence and/or mode of evolution of the Korean. In this experiments, aldosterone secretion rate(ASR) was measured in normotensive Korean during high and low dietary sodium intake with or without additional potassium supply. Results were as follows; 1) In normal Korean, dietary sodium restriction resulted in appreciable increase in ASR, and a sustained increase in urinary aldosterone excretion with an increase in plasma level. 2) Oral potassium loading easily stimulated the adrenal cortex of the Korean who already adapted to a high sodium diet when dietary sodium is still identical with not·mal American. 3) Quantitative relationships between aldosterone secretion rate, plasma concentration and urinary excretion of aldosterone were altered by potassium loading. 4) Urinary aldosterone excretion didn't reflect concurrent increase aldosterone secretion in subjects with Potassium intake. It was discussed that the changes of tile relationships and of adrenal hyper response on Potassium Beading in the Korean will be elucidated by measuring the metabolic clearance rate.

  • PDF

Dietary Evaluation and Protein Catabolic Rate in Maintenance Hemodialysis Patients (혈액투석환자의 식이조사 및 Protein Catabolic Rate에 관한 연구)

  • 장유경
    • Journal of Nutrition and Health
    • /
    • v.25 no.3
    • /
    • pp.256-263
    • /
    • 1992
  • As various metabolic alterations develope in uremic patients. their diets need to be restricted, Furthermore medical complications with accompanying anorexia result in further complications and decrease in body strength. To assess the nutritional status of hemodialyzed patients we performed evaluation for dietary intake and protein catabolic rate(PCR) For 24 clinically stable male patients undergoing maintenance hemodialysis dietary intake was estimated by 3-day food record method and PCR was calculated with blood urea nitrogen at pre and post hemodialysis. The results were as follows : 1) Average daily energy and protein intake were 26.7$\pm$5.1kcal/kg of body weight. 0.95$\pm$0.19 g/kg of body weight respectively. 2) Protein catabolic rate calculated from interdialysis blood urea nitrogen levels was 1.00$\pm$0.20g/kg of body weight. Protein catabolic rate was correlated with the amount of Protein intake(r=0.44 p<0.05) 3) Relative body weight(RBW) of the subjects was smaller than that of healthy man without hemodialysis. Calorie and protein intake and protein catabolic rate were significantly different (p<0.05) between patients with lower RBW(<90% of ideal body weight) and those with normal RBW(90~110% of ideal body weight) and those with normal RBW(90~110% of iedal body weight) 4) The duration of hemodialysis did not have a significant effect on the nutritional status of the subjects.

  • PDF

Regulation Mechanism of Redox Reaction in Rubredoxin

  • Tongpil Min;Marly K. Eidsness;Toshiko Ichiye;Kang, Chul-Hee
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.149-153
    • /
    • 2001
  • The electron transfer reaction is one of the most essential processes of life. Not only does it provide the means of transforming solar and chemical energy into a utilizable form for all living organisms, it also extends into a range of metabolic processes that support the life of a cell. Thus, it is of great interest to understand the physical basis of the rates and reduction potentials of these reactions. To identify the major determinants of reduction potentials in redox proteins, we have chosen the simplest electron transfer protein, rubredoxin, a small (52-54 residue) iron-sulfur protein family, widely distributed in bacteria and archaea. Rubredoxins can be grouped into two classes based on the correlation of their reduction potentials with the identity of residue 44; those with Ala44 (ex: Pyrococcus furiosus) have reduction potentials that are ∼50 mV higher than those with Va144 (ex: Clostridium pasteurianum). Based on the crystal structures of rubredoxins from C. pasteurianum and P. furiosus, we propose the identity of residue 44 alone determines the reduction potential by the orientation of the electric dipole moment of the peptide bond between 43 and 44. Based on 1.5 $\AA$ resolution crystal structures and molecular dynamics simulations of oxidized and reduced rubredoxins from C. pasteurianum, the structural rearrangements upon reduction suggest specific mechanisms by which electron transfer reactions of rubredoxin should be facilitated.

  • PDF

Gene Expression Profile in Epididymal Adipose Tissue from High-fat Diet Fed Mice (고지방식이를 섭취한 mouse에서의 유전자군의 발현양상 변화)

  • Cha, Min-Ho;Kim, Kyung-Seon;Sim, Woong-Seop;Yoon, Yoo-Sik
    • Korean Journal of Oriental Medicine
    • /
    • v.8 no.2 s.9
    • /
    • pp.75-84
    • /
    • 2002
  • Obesity can be defined as a metabolic disease due to a increased state of fat tissue caused by an imbalance of calorie intake and use. To define genes that affected by different nutrient, we study gene expression from mice which were fed different nutrient. Epididymal and retro-peritineal adipose tissue were increase in high fat diet feeding mice compared with control, but liver and spleen were not. In serum, total cholesterol were differently increase in high fat diet feeding mice but total triglyceride and free fatty acid were not. That was maybe result of energy balance regulation in vivo system. aP2, PPART2 and FAS genes that were increased during adipogenesis were inclosed in high fat diet fed mice compared with control. In microarray assay, 1.4% of total genes were affected in epididymal adipose tissue by different nutrient. 1.1% of total genes were decreased down 0.5 fold and 0.3% were increased over 2 fold. These results indicated that many genes are affected in adipose tissue by nutrient.

  • PDF

Comparison of Health Status and Mibyeong Characteristics between Cold Syndrome and Heat Syndrome by Cold Heat Syndrome Differentiation Score (한열변증 점수를 이용한 한증과 열증의 건강 상태와 미병 특징 비교)

  • Joo, Jong-Cheon;Lee, Siwoo;Park, Soo-Jung
    • The Journal of Korean Medicine
    • /
    • v.39 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • Objectives: The objective of this study is to develop the diagnostic tool to distinguish between cold syndrome (CS) and heat syndrome (HS). Methods: A total of 1,753 subjects were divided into three groups, those are CS group, intemediate group, and HS group, by the mean and standard deviation of the cold heat syndrome differentiation score using 7 point scale consisting of 9 items. Demographic characteristics, diseases history, health status, Mibyeong, syndrome differentiation were analyzed. Results: CS is characterized by women, elderly, and low body mass index. CS has a history of thyroid disease, cataract, depression, osteoporosis, and HS has a history of prostatomegaly. CS receives less social psychosocial stress than HS, and the quality of life associated with health status is lower than HS. CS group has the tendency to be tired, painful, sleepless, dyspeptic and anxious. Conclusions: CS is a set of symptoms associated with decreased energy metabolism and decreased metabolic function, and is more likely to be unhealthy than HS.

Effects and Mechanisms of Taurine as a Therapeutic Agent

  • Schaffer, Stephen;Kim, Ha Won
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.225-241
    • /
    • 2018
  • Taurine is an abundant, ${\beta}-amino$ acid with diverse cytoprotective activity. In some species, taurine is an essential nutrient but in man it is considered a semi-essential nutrient, although cells lacking taurine show major pathology. These findings have spurred interest in the potential use of taurine as a therapeutic agent. The discovery that taurine is an effective therapy against congestive heart failure led to the study of taurine as a therapeutic agent against other disease conditions. Today, taurine has been approved for the treatment of congestive heart failure in Japan and shows promise in the treatment of several other diseases. The present review summarizes studies supporting a role of taurine in the treatment of diseases of muscle, the central nervous system, and the cardiovascular system. In addition, taurine is extremely effective in the treatment of the mitochondrial disease, mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), and offers a new approach for the treatment of metabolic diseases, such as diabetes, and inflammatory diseases, such as arthritis. The review also addresses the functions of taurine (regulation of antioxidation, energy metabolism, gene expression, ER stress, neuromodulation, quality control and calcium homeostasis) underlying these therapeutic actions.

Methods for Introduction of the Atmospheric Nitrogen Fixing Ability to Plants

  • PreiningerE;BokaK;ZatykoJ;KoranyiP;GyurjanI
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.31-38
    • /
    • 1999
  • An artificial symbiosis was established between diazotropic Azomonas insignis and strawberry (Fragaria x ananassa). The partnership was created by in vitro techniques through callus induction and organogenesis. The basis of this partnerships is the bacterial dependence on the plants metabolic activity, using maltose in the medium as a carbon and energy source which can be utilized by the plant cells only. The presence of bacteria in the intercellular spaces of the callus tissues and regenerated plants was proven by microscopic techniques. Nitrogenase activity could also be detected in the plant tissues. For successful and high frequency introduction of bacteria to the plant tissues, biolistic gun method was used. On the basis of the DNA transfer method, Azotobacter vinelandii bacteria were delivered directly into strawberry tissues by the particle bombardment. This was the first use of living bacteria as microprojectils for bombardment of plant tissues. The treatment was successful, the presence of bacteria in the developing callus tissue and regenerated plants were detected by light and electron microscopy.

  • PDF

In silico analysis of MeJA-induced comparative transcriptomes in Brassica oleraceae L. var. capitata

  • Lee, Ok Ran;Kim, Dae-Soo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.189-203
    • /
    • 2016
  • Brassica oleraceae var capitata is a member of the Brassicaceae family and is widely used as an horticultural crop. In the present study, transcriptome analysis of B. oleraceae L. var capitata was done for the first time using eight-week old seedlings treated with $50{\mu}m$ MeJA, versus mock-treated samples. The complete transcripts for both samples were obtained using the GS-FLX sequencer. Overall, we obtained 275,570 and 266,457 reads from seedlings treated with or without $50{\mu}m$ MeJA, respectively. All the obtained reads were annotated using biological databases and functionally classified using gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomics (KEGG). By using GO analyses, putative transcripts were examined in terms of biotic and abiotic stresses, cellular component organization, biogenesis, and secondary metabolic processes. The KEGG pathways for most of the transcripts were involved in carbohydrate metabolism, energy metabolism, and secondary metabolite synthesis. In order to double the sequenced data, we randomly chose two putative genes involved in terpene biosynthetic pathways and studied their transcript patterns under MeJA treatment. This study will provide us a platform to further characterize the genes in B. oleracea var capitata.