• 제목/요약/키워드: metabolic acid

검색결과 1,018건 처리시간 0.032초

Serum branch chain amino acids and aromatic amino acids ratio and metabolic risks in Koreans with normal-weight or obesity: a cross-sectional study

  • Ji-Sook Park;Kainat Ahmed;Jung-Eun Yim
    • 대한지역사회영양학회지
    • /
    • 제29권3호
    • /
    • pp.212-221
    • /
    • 2024
  • Objectives: Metabolic disease is strongly associated with future insulin resistance, and its prevalence is increasing worldwide. Thus, identifying early biomarkers of metabolic-related disease based on serum profiling is useful to control future metabolic disease. Our study aimed to assess the association of serum branched chain amino acids (BCAAs) and aromatic amino acids (AAAs) ratio and metabolic disease according to body mass index (BMI) status among Korean adults. Methods: This cross-sectional study included 78 adults aged 20-59 years in Korea. We compared serum amino acid (AA) levels between adults with normal-weight and adults with obesity and investigated biomarkers of metabolic disease. We examined serum AA levels, blood profile, and body composition. We also evaluated the association between serum AAs and metabolic-related disease. Results: The height, weight, BMI, waist circumference, hip circumference, waist-hip-ratio, body fat mass, body fat percent, skeletal muscle mass, systolic blood pressure, and diastolic blood pressure were higher in the group with obesity compared to normal weight group. The group with obesity showed significantly higher levels of BCAA, AAA, and BCAA and AAA ratio. Further, BCAA and AAA ratio were significantly positively correlated with triglyceride, body weight, and skeletal muscle mass. The evaluation of metabolic disease risks revealed an association between the ratios of BCAAs and AAAs, hypertension, and metabolic syndrome. Conclusions: Our study is showed the associations between BCAA and AAA ratio, obesity, and obesity-related diseases using various analytical approaches. The elevated BCAA and AAA ratio could be early biomarkers for predicting future metabolic diseases in Korean population.

Alteration of Media Composition and Light Conditions Change Morphology, Metabolic Profile, and Beauvericin Biosynthesis in Cordyceps bassiana Mycelium

  • Hyun, Sun-Hee;Lee, Seok-Young;Park, Shin Jung;Kim, Da Yeon;Chun, Young-Jin;Sung, Gi-Ho;Kim, Seong Hwan;Choi, Hyung-Kyoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.47-55
    • /
    • 2013
  • Metabolic alterations of Cordyceps bassiana mycelium were investigated under the following culture medium and light conditions: dextrose agar supplemented with 0.5% yeast extract (SDAY) medium with light (SL), SDAY medium without light (SD), nut medium without light (ND), and iron-supplemented SDAY medium without light (FD). The levels of asparagine, aspartic acid, glutamic acid, glutamine, histidine, lysine, ornithine, and proline were significantly higher under SD and SL conditions. The levels of most of the alcohols, saturated fatty acids, unsaturated fatty acids, fatty acid esters, sterols, and terpenes were higher under the ND condition than in the other conditions, but beauvericin was not detectable under the ND condition. The FD condition was favorable for the enhanced production of aminomalonic acid, malic acid, mannonic acid, and erythritol. Thus, the metabolic characteristics of C. bassiana can be manipulated by varying the cultivation conditions, rendering this fungus potentially favorable as a nutraceutical and medicinal resource.

Porphyromonas gingivalis의 독성, 대사산물 및 유전자이종성과의 관련성 (RELATIONSHIP BETWEEN VIRULENCE, METABOLIC ACID AND GENETIC HETEROGENEITY OF PORPHYROMONAS GINGIVALIS)

  • 김강주;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제23권1호
    • /
    • pp.1-15
    • /
    • 1993
  • P. gingivalis has been implicated as a strong pathogen in periodontal disease and known to have three serotypes of P. gingivalis. The purpose of this study is to investigate on the relationship between virulence, metabolic acids and genetic heterogeneity of P. gingivalis. P. gingivalis W50 standard strain and five strains of P. gingivalis serotype b Korean isolates were used in this study. For in vitro virulence test, lyophilized whole cell P. gingivalis were suspended, and sonicated with ultrasonic dismembranometer. Sonicated samples were applied to cultured cells derived from periodontal ligament, and cell activity was assayed with growth and survival assay. The metabolic acids were also extracted, and determined by High Performance Liquid Chromatography. Pst I-digested bacterial genomic DNA was electrophoresed, and densitometric analysis was performed to study the genetic heterogeneity. All of the P. gingivalis serotype b produced butyric acid. In cell activity study, butyric acid inhibited the cell activity irrespective of its concentration. Densitometric analysis showed restriction fragment length polymorphism. These results suggested that there existed heterogeneity of the metabolic acids and the virulence of P. gingivalis and such heterogeneity might be related to genetic heterogeneity.

  • PDF

Positive Effects of Adiponectin, BDNF, and GLP-1 on Cortical Neurons Counteracting Palmitic Acid Induced Neurotoxicity

  • Danbi Jo;Seo Yeon Ahn;Seo Yoon Choi;Yoonjoo Choi;Dong Hoon Lee;Juhyun Song
    • Clinical Nutrition Research
    • /
    • 제13권2호
    • /
    • pp.121-129
    • /
    • 2024
  • The prevalence of metabolic syndrome caused by diets containing excessive fatty acids is increasing worldwide. Patients with metabolic syndrome exhibit abnormal lipid profiles, chronic inflammation, increased levels of saturated fatty acids, impaired insulin sensitivity, excessive fat accumulation, and neuropathological issues such as memory deficits. In particular, palmitic acid (PA) in saturated fatty acids aggravates inflammation, insulin resistance, impaired glucose tolerance, and synaptic failure. Recently, adiponectin, brain-derived neurotrophic factor (BDNF), and glucose-like peptide-1 (GLP-1) have been investigated to find therapeutic solutions for metabolic syndrome, with findings suggesting that they are involved in insulin sensitivity, enhanced lipid profiles, increased neuronal survival, and improved synaptic plasticity. We investigated the effects of adiponectin, BDNF, and GLP-1 on neurite outgrowth, length, and complexity in PA-treated primary cortical neurons using Sholl analysis. Our findings demonstrate the therapeutic potential of adiponectin, BDNF, and GLP-1 in enhancing synaptic plasticity within brains affected by metabolic imbalance. We underscore the need for additional research into the mechanisms by which adiponectin, BDNF, and GLP-1 influence neural complexity in brains with metabolic imbalances.

피부계 이상을 동반하는 선천성대사질환 (Congenital Metabolic Disorders with Cutaneous Changes)

  • 이상은
    • 대한유전성대사질환학회지
    • /
    • 제22권2호
    • /
    • pp.53-57
    • /
    • 2022
  • 다양한 아미노산 및 지질 대사 질환에서 피부와 모발의 변화가 관찰된다. 탈모증이 관찰되는 경우 장병성 선단피부염(아연 대사 장애), 비오티니다아제 결핍증 (비타민 B), 다발성 카르복실라제 결핍증, acrodermatitis acidemica 등 아미노산 및 비타민 대사 결함을 의심해볼 수 있다. 또한 부서지기 쉬운 모발이 관찰되는 경우 아르기니노숙신산뇨증 또는 시트룰린혈증 및 점액다당증을 의심해볼 수 있다. 건조하고 두꺼워진 인설을 가진 피부 또는 비늘증은 중성지질 축적 질환, 지방산 대사 장애, 콜레스테롤 합성 및 대사 장애와 관련하여 나타날 수 있다. 수포성 병변은 장병성 선단피부염, 비오티니다아제 결핍증, 홀로카르복실라제 합성효소 결핍증, acrodermatitis acidemica 등에서 나타날 수 있다.

Dynamic Modeling of Lactic Acid Fermentation Metabolism with Lactococcus lactis

  • Oh, Euh-Lim;Lu, Mingshou;Choi, Woo-Joo;Park, Chang-Hun;Oh, Han-Bin;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.162-169
    • /
    • 2011
  • A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

Lactic Acid Bacteria의 동역학 네트워크 모델을 이용한 in Silico 모사방법 연구 (Study of in Silico Simulation Method for Dynamic Network Model in Lactic Acid Bacteria)

  • 정의섭;이혜원;이진원
    • 제어로봇시스템학회논문지
    • /
    • 제11권10호
    • /
    • pp.823-829
    • /
    • 2005
  • We have newly constructed an in silico model of fermentative metabolism for Lactococcus lactis in order to analyze the characteristics of metabolite flux for dynamic network. A rigorous mathematical model for metabolic flux has been developed and simulation researches have been performed by using GEPASI program. In this simulation task, we were able to predict the whole flux distribution trend for lactate metabolism and analyze the flux ratio on the pyruvate branch point by using metabolic flux analysis(MFA). And we have studied flux control coefficients of key reaction steps in the model by using metabolic control analysis(MCA). The role of pyruvate branch seems to be essential for the secretion of lactate and other organic byproducts. Then we have made an effort to elucidate its metabolic regulation characteristics and key reaction steps, and find an optimal condition for the production of lactate.

담즙산과 대사질환 (Bile Acids and the Metabolic Disorders)

  • 노지혜;윤정현
    • 한국임상약학회지
    • /
    • 제28권4호
    • /
    • pp.273-278
    • /
    • 2018
  • Bile acids are major constituents of bile and known to help absorb dietary fat and fat-soluble vitamins in the gastrointestinal tract. In the past few decades, many studies have shown that bile acids not only play a role in fat digestion but also function as broad range of signal transduction hormones by binding to various receptors present in cell membranes or nuclei. Bile acid receptors are distributed in a wide range of organs and tissues in the human body. They perform multitudes of physiological functions with complex mechanisms. When bile acids bind to their receptors, they regulate fat and glucose metabolism in a tissue-specific way. In addition, bile acids are shown to inhibit inflammation and fibrosis in the liver. Considering the roles of bile acids as metabolic regulators, bile acids and their receptors can be very attractive targets in treating metabolic disorders. In the future, if roles of bile acids and their receptors are further clarified, they will be the novel target of drugs in the treatment of various metabolic diseases.

대학생의 대사증후군 위험요인과 혈청 요산 및 소변 내 산도와의 관련성 (Association between Risk Factors of Metabolic Syndrome, Serum Uric Acid, and Urine pH in University Students)

  • 이진화;박현주
    • Journal of Korean Biological Nursing Science
    • /
    • 제15권4호
    • /
    • pp.237-246
    • /
    • 2013
  • Purpose: A few Korean studies have reported that low urine acidity and hyperuricemia are related to metabolic syndrome. Therefore, we evaluated the relationships between urine pH, serum Uric Acid (UA), and metabolic risk factors in university students. Methods: Data were obtained from student health examinations in one university. Participants were 3,412 male and 4,214 female students. Descriptive statistics, t-test, logistic regressions and multiple logistic regression using SPSS version 18.0 were performed. Results: No significant relationship was found between metabolic risk factors and urine pH. From the univariate analysis, serum UA was significantly higher in obese ($BMI{\geq}25$), elevated blood pressure ($SBP{\geq}130$ and $DBP{\geq}85$), and higher triglyceride (${\geq}150$) groups for males and in obese, higher triglyceride and fasting blood sugar (${\geq}100$), and lower HDL-cholesterol (<50) groups for females. From the results of multivariate analysis, age, BMI, and triglyceride were significantly related to serum UA in males, BMI and HDL-cholesterol were significantly related to serum UA in females. Conclusion: Although there was no significant relationship between urinary pH and metabolic risk factors, significant associations between some of the metabolic risk factors and serum UA were found in the young adult population. Further studies are required to know the exact pathway between serum UA and metabolic syndrome.

Tandem Mass Spectrometric Analysis for Disorders in Amino, Organic and Fatty Acid Metabolism : 2 Years of SCL Experience in Korea

  • Yoon, Hye-Ran;Lee, Kyung Ryul
    • 대한유전성대사질환학회지
    • /
    • 제3권1호
    • /
    • pp.86-93
    • /
    • 2003
  • Background : The SCL began screening of newborns and high risk group blood spots with tandem mass spectrometry (MS/MS) in April 2001. Our goal was to determine approximate prevalence of metabolic disorders, optimization of decision criteria for estimation of preventive effect with early diagnosis. This report describes the ongoing effort to identify more than 30 metabolic disorders by MS/MS in South Korea. Methods : Blood spot was collected from day 2 to 30 (mostly from day 2 to 10) after birth for newborn. Blood spot of high risk group was from the pediatric patients in NICU, developmental delay, mental retardation, strong family history of metabolic disorders. One punch (3.2 mm ID) of dried blood spots was extracted with $150{\mu}L$ of methanol containing isotopically labelled amino acids (AA) and acylcarnitines (AC) internal standards. Butanolic HCl was added and incubated at $65^{\circ}C$ for 15 min. The butylated extract was introduced into the inlet of MS/MS. Neutral loss of m/z 102 and parent ion mode of m/z 85 were set for the analyses of AA and AC, respectively. Diagnosis was confirmed by repeating acylcarnitine profile, urine organic acid and plasma amino acid analysis, direct enzyme assay, or molecular testing. Results : Approximately 31,000 neonates and children were screened and the estimated prevalence (newborn/high risk group), sensitivity, specificity and recall rate amounted to 1:2384/1:2066, 96.55%, 99.98%, and 0.73%, respectively. Confirmed 28 (0.09%) multiple metabolic disorders (newborn/high risk) were as follows; 13 amino acid disorders [classical PKU (3/4), BH4 deficient-hyperphenylalaninemia (0/1), Citrullinemia (1/0), Homocystinuria (0/2), Hypermethioninemia (0/1), Tyrosinemia (1/0)], 8 organic acidurias [Propionic aciduria (2/1), Methylmalonic aciduria (0/1), Isovaleric aciduria (1/1), 3-methylcrotonylglycineuria (1/0), Glutaric aciduria type1 (1/0)], 7 fatty acid oxidation disorders [LCHAD def. (2/2), Mitochondrial TFP def. (0/1), VLCAD def. (1/0), LC3KT def. (0/1). Conclnsion : The relatively normal development of 10 patients with metabolic disorders among newborns (except for the expired) demonstrates the usefulness of newborn screening by MS/MS for early diagnosis and medical intervention. However, close coordination between the MS/MS screening laboratory and the metabolic clinic/biochmical geneticists is needed to determine proper decision of screening parameters, confirmation diagnosis, follow-up scheme and additional tests.

  • PDF